Large-Eddy Simulation over Complex Terrain Using an Improved Immersed Boundary Method in the Weather Research and Forecasting Model

Author:

Bao Jingyi1,Chow Fotini Katopodes1,Lundquist Katherine A.2

Affiliation:

1. University of California, Berkeley, Berkeley, California

2. Lawrence Livermore National Laboratory, Livermore, California

Abstract

Abstract The Weather Research and Forecasting (WRF) Model is increasingly being used for higher-resolution atmospheric simulations over complex terrain. With increased resolution, resolved terrain slopes become steeper, and the native terrain-following coordinates used in WRF result in numerical errors and instability. The immersed boundary method (IBM) uses a nonconformal grid with the terrain surface represented through interpolated forcing terms. Lundquist et al.’s WRF-IBM implementation eliminates the limitations of WRF’s terrain-following coordinate and was previously validated with a no-slip boundary condition for urban simulations and idealized terrain. This paper describes the implementation of a log-law boundary condition into WRF-IBM to extend its applicability to general atmospheric complex terrain simulations. The implementation of the improved WRF-IBM boundary condition is validated for neutral flow over flat terrain and the complex terrain cases of Askervein Hill, Scotland, and Bolund Hill, Denmark. First, comparisons are made to similarity theory and standard WRF results for the flat terrain case. Then, simulations of flow over the moderately sloped Askervein Hill are used to demonstrate agreement between the IBM and terrain-following WRF results, as well as agreement with observations. Finally, Bolund Hill simulations show that WRF-IBM can handle steep topography (standard WRF fails) and compares well to observations. Overall, the new WRF-IBM boundary condition shows improved performance, though the leeside representation of the flow can be potentially further improved.

Funder

Office of Energy Efficiency and Renewable Energy

Office of Naval Research

National Science Foundation

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3