Assessing turbulence and mixing parameterizations in the gray-zone of multiscale simulations over mountainous terrain during the METEX21 field experiment

Author:

Wiersema David J.,Wharton Sonia,Arthur Robert S.,Juliano Timothy W.,Lundquist Katherine A.,Glascoe Lee G.,Newsom Rob K.,Schalk Walter W.,Brown Michael J.,Dexheimer Darielle

Abstract

Multiscale numerical weather prediction models transition from mesoscale, where turbulence is fully parameterized, to microscale, where the majority of highly energetic scales of turbulence are resolved. The turbulence gray-zone is situated between these two regimes and multiscale models must downscale through these resolutions. Here, we compare three multiscale simulations which vary by the parameterization used for turbulence and mixing within the gray-zone. The three parameterizations analyzed are the Mellor-Yamada Nakanishi and Niino (MYNN) Level 2.5 planetary boundary layer scheme, the TKE-1.5 large eddy simulation (LES) closure scheme, and a recently developed three-dimensional planetary boundary layer scheme based on the Mellor-Yamada model. The simulation domain includes complex (i.e., mountainous) terrain in Nevada that was instrumented with meteorological towers, profiling and scanning lidars, a tethered balloon, and a surface flux tower. Simulations are compared to each other and to observations, with assessment of model skill at predicting wind speed, wind direction and TKE, and qualitative evaluations of transport and dispersion of smoke from controlled releases. This analysis demonstrates that microscale predictions of transport and dispersion can be significantly influenced by the choice of turbulence and mixing parameterization in the terra incognita, particularly over regions of complex terrain and with strong local forcing. This influence may not be apparent in the analysis of model skill, and motivates future field campaigns involving controlled tracer releases and corresponding modeling studies of the turbulence gray-zone.

Funder

Lawrence Livermore National Laboratory

National Nuclear Security Administration

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3