Verification of Convection-Allowing Model Ensemble Analyses of Near-Storm Environments Using MPEX Upsonde Observations

Author:

Kerr Christopher A.1,Stensrud David J.2,Wang Xuguang3

Affiliation:

1. School of Meteorology, Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/National Severe Storms Laboratory, Norman, Oklahoma

2. Department of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania

3. School of Meteorology, University of Oklahoma, Norman, Oklahoma

Abstract

The Mesoscale Predictability Experiment (MPEX) conducted during the spring of 2013 included frequent coordinated sampling of near-storm environments via upsondes. These unique observations were taken to better understand the upscale effects of deep convection on the environment, and are used to validate the accuracy of convection-allowing (Δ x = 3 km) model ensemble analyses. A 36-member ensemble was created with physics diversity using the Weather Research and Forecasting Model, and observations were assimilated via the Data Assimilation Research Testbed using an ensemble adjustment Kalman filter. A 4-day sequence of convective events from 28 to 31 May 2013 in the south-central United States was analyzed by assimilating Doppler radar and conventional observations. No MPEX upsonde observations were assimilated. Since the ensemble mean analyses produce an accurate depiction of the storms, the MPEX observations are used to verify the accuracy of the analyses of the near-storm environment. A total of 81 upsondes were released over the 4-day period, sampling different regions of near-storm environments including storm inflow, outflow, and anvil. The MPEX observations reveal modest analysis errors overall when considering all samples, although specific environmental regions reveal larger errors in some state fields. The ensemble analyses underestimate cold pool depth, and storm inflow meridional winds have a pronounced northerly bias that results from an underprediction of inflow wind speed magnitude. Most bias distributions are Gaussian-like, with a few being bimodal owing to systematic biases of certain state fields and environmental regions.

Funder

Division of Atmospheric and Geospace Sciences

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3