Simulation of a Serial Upstream-Propagating Mesoscale Convective System Event over Southeastern South America Using Composite Initial Conditions

Author:

Anabor Vagner1,Stensrud David J.2,de Moraes Osvaldo L. L.1

Affiliation:

1. Laboratório de Física da Atmosfera, Departamento de Física, Universidade Federal de Santa Maria, Santa Maria, Brazil

2. NOAA/National Severe Storms Laboratory, Norman, Oklahoma

Abstract

Serial upstream-propagating mesoscale convective system (MCS) events over southeastern South America are important contributors to the local hydrologic cycle as they can provide roughly half of the total monthly summer precipitation. However, the mechanisms of upstream propagation for these events have not been explored. To remedy this situation, a numerical simulation of the composite environmental conditions from 10 observed serial MCS events is conducted. Results indicate that the 3-day simulation from the composite yields a reasonable evolution of the large-scale environment and produces a large region of organized convection in the warm sector over an extended period as seen in observations. Upstream propagation of the convective region is produced and is tied initially to the development and evolution of untrapped internal gravity waves. However, as convective downdrafts develop and begin to merge and form a surface cold pool in the simulation, the cold pool and its interaction with the environmental low-level flow also begins to play a role in convective evolution. While the internal gravity waves and cold pool interact over a several hour period to control the convective development, the cold pool eventually dominates and determines the propagation of the convective region by the end of the simulation. This upstream propagation of a South American convective region resembles the southward burst convective events described over the United States and highlights the complex interactions and feedbacks that challenge accurate forecasts of convective system evolution.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference37 articles.

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3