High-Resolution GFS-Based MOS Quantitative Precipitation Forecasts on a 4-km Grid

Author:

Charba Jerome P.1,G. Samplatsky Frederick1

Affiliation:

1. NOAA/National Weather Service, Meteorological Development Laboratory, Silver Spring, Maryland

Abstract

Abstract The Meteorological Development Laboratory (MDL) of the National Weather Service (NWS) has developed high-resolution Global Forecast System (GFS)-based model output statistics (MOS) 6- and 12-h quantitative precipitation forecast (QPF) guidance on a 4-km grid for the contiguous United States. Geographically regionalized multiple linear regression equations are used to produce probabilistic QPFs (PQPFs) for multiple precipitation exceedance thresholds. Also, several supplementary QPF elements are derived from the PQPFs. The QPF elements are produced (presently experimentally) twice per day for forecast projections up to 156 h (6.5 days); probability of (measurable) precipitation (POP) forecasts extend to 192 h (8 days). Because the spatial and intensity resolutions of the QPF elements are higher than that for the currently operational gridded MOS QPF elements, this new application is referred to as high-resolution MOS (HRMOS) QPF. High spatial resolution and enhanced skill are built into the HRMOS PQPFs by incorporating finescale topography and climatology into the predictor database. This is accomplished through the use of specially formulated “topoclimatic” interactive predictors, which are formed as a simple product of a climatology- or terrain-related quantity and a GFS forecast variable. Such a predictor contains interactive effects, whereby finescale detail in the topographic or climatic variable is built into the GFS forecast variable, and dynamics in the large-scale GFS forecast variable are incorporated into the static topoclimatic variable. In essence, such interactive predictors account for the finescale bias error in the GFS forecasts, and thus they enhance the skill of the PQPFs. Underlying the enhanced performance of the HRMOS QPF elements is extensive use of archived fine-grid radar-based quantitative precipitation estimates (QPEs). The fine spatial scale of the QPE data supported development of a detailed precipitation climatology, which is used as a climatic predictive input. Also, the very large number of QPE sample points supported specification of rare-event (i.e., ≥1.50 and ≥2.00 in.) 6-h precipitation exceedance thresholds as predictands. Geographical regionalization of the PQPF regression equations and the derived QPF elements also contributes to enhanced forecast performance. Limited comparative verification of several 6-h model QPFs in categorical form showed the HRMOS QPF with significantly better threat scores and biases than corresponding GFS and operational gridded MOS QPFs. Limited testing of logistic regression versus linear regression to produce the 6-h PQPFs showed the feasibility of applying the logistic method with the very large HRMOS samples. However, objective screening of many candidate predictors with linear regression resulted in slightly better PQPF skill.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference43 articles.

1. An overview of the National Weather Service’s centralized statistical quantitative precipitation forecast.;Antolik;J. Hydrol.,2000

2. On the ability to develop MOS guidance with short dependent samples from an evolving numerical model.;Antolik,2009

3. Comparison of methodologies for probabilistic quantitative precipitation forecasting.;Applequist;Wea. Forecasting,2002

4. A new operational system for forecasting precipitation type.;Bocchieri;Mon. Wea. Rev.,1979

5. Verification of forecasts expressed in terms of probability.;Brier;Mon. Wea. Rev.,1950

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3