Spatial and Temporal Variation of Subseasonal-to-Seasonal (S2S) Precipitation Reforecast Skill across the CONUS

Author:

Levey J. R.1ORCID,Sankarasubramanian A.1

Affiliation:

1. a Department of Civil, Construction and Environmental Engineering, North Carolina State University, Raleigh, North Carolina

Abstract

Abstract Precipitation forecasts, particularly at subseasonal-to-seasonal (S2S) time scale, are essential for informed and proactive water resource management. Although S2S precipitation forecasts have been evaluated, no systematic decomposition of the skill, Nash–Sutcliffe efficiency (NSE) coefficient, has been analyzed toward understanding the forecast accuracy. We decompose the NSE of S2S precipitation forecast into its three components—correlation, conditional bias, and unconditional bias—by four seasons, three lead times (1–12, 1–22, and 1–32 days), and three models, European Centre of Medium-Range Weather Forecasts (ECMWF), National Centers for Environmental Prediction’s (NCEP) Climate Forecast System (CFS) model, and Environment and Climate Change Canada (ECCC), over the conterminous United States (CONUS). Application of a dry threshold, removal of grid cells with seasonal climatological precipitation means below 0.01 in. per day, is important as the NSE and correlations are lower across all seasons after masking areas with low precipitation values. Further, a west-to-east gradient in S2S forecast skill exists, and forecast skill was better during the winter months and for areas closer to the coast. Overall, ECMWF’s model performance was stronger than both ECCC and NCEP CFS’s performance, mainly for the forecasts issued during the fall and winter months. However, ECCC and NCEP CFS performed better for the forecast issued during the spring months and for areas further from the coast. Postprocessing using simple model output statistics could reduce both unconditional and conditional biases to zero, thereby offering better skill for regimes with high correlation. Our decomposition results show that efforts should focus on improving model parameterization and initialization schemes for climate regimes with low correlation.

Funder

Directorate for Engineering

National Science Foundation

Publisher

American Meteorological Society

Reference44 articles.

1. An overview of the National Weather Service’s centralized statistical quantitative precipitation forecasts;Antolik, M. S.,2000

2. Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling;Beck, H. E.,2017

3. Evolution of the North American Multi-Model Ensemble;Becker, E.,2020

4. Verification of forecasts expressed in terms of probability;Brier, G. W.,1950

5. Statistical forecasts based on the National Meteorological Center’s numerical weather prediction system;Carter, G. M.,1989

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3