Quantitative Precipitation Forecasting Using an Improved Probability-Matching Method and Its Application to a Typhoon Event

Author:

Liu Jin-Qing,Li Zi-LiangORCID,Wang Qiong-Qun

Abstract

This present study aims to explore how forecasters can quickly make accurate predictions by using various high-resolution model forecasts. Based on three high temporal-spatial resolution (3 km, hourly) numerical weather prediction models (CMA-MESO, CMA-GD, CMA-SH3) from the China Meteorological Administration (CMA), the hourly precipitation characteristics of three model within 24 h from March to September 2020 are discussed and integrated into a single, hourly, deterministic quantitative precipitation forecast (QPF) by making use of an improved weighted moving average probability-matching method (WPM). The results are as follows: (1) In non-rainstorm forecasts, CMA-MESO and CMA-GD have similar forecast abilities. However, in rainstorm forecasts, CMA-MESO has a notable advantage over the other two models. Thus, CMA-MESO is selected as a critical factor when participating in sensitivity experiments. (2) Compared with the traditional equal-weight probability-matching method (PM), the WPM improves the different grade QPF because it can effectively reduce rainfall pattern bias by making use of the weighted moving average (WMA). Additionally, the WPM threat score in rainstorm forecast similarly improved from 0.051 to 0.056, with a 9.8% increase relative to the PM. (3) The sensitivity experiments show that an optimal rainfall intensity score (WPM-best) can further improve the QPF and overcome all single models in both rainstorm and non-rainstorm forecasts, and the WPM-best has a rainstorm threat score skill of 0.062, with an increase of 21.6% compared with the PM. The performance of the WPM-best will be better if the precipitation intensity is stronger and the valid forecast periods is longer. It should be noted that there is no need to select models before using the WPM-best method, because WPM-best can give a very low weight to the less-skillful model in a more objective way. (4) The improved WPM method is also applied to investigate the heavy-rainfall case induced by typhoon Mekkhala (2020), where the improved WPM technique significantly improves rainstorm forecasting ability compared with a single model.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3