Abstract
This present study aims to explore how forecasters can quickly make accurate predictions by using various high-resolution model forecasts. Based on three high temporal-spatial resolution (3 km, hourly) numerical weather prediction models (CMA-MESO, CMA-GD, CMA-SH3) from the China Meteorological Administration (CMA), the hourly precipitation characteristics of three model within 24 h from March to September 2020 are discussed and integrated into a single, hourly, deterministic quantitative precipitation forecast (QPF) by making use of an improved weighted moving average probability-matching method (WPM). The results are as follows: (1) In non-rainstorm forecasts, CMA-MESO and CMA-GD have similar forecast abilities. However, in rainstorm forecasts, CMA-MESO has a notable advantage over the other two models. Thus, CMA-MESO is selected as a critical factor when participating in sensitivity experiments. (2) Compared with the traditional equal-weight probability-matching method (PM), the WPM improves the different grade QPF because it can effectively reduce rainfall pattern bias by making use of the weighted moving average (WMA). Additionally, the WPM threat score in rainstorm forecast similarly improved from 0.051 to 0.056, with a 9.8% increase relative to the PM. (3) The sensitivity experiments show that an optimal rainfall intensity score (WPM-best) can further improve the QPF and overcome all single models in both rainstorm and non-rainstorm forecasts, and the WPM-best has a rainstorm threat score skill of 0.062, with an increase of 21.6% compared with the PM. The performance of the WPM-best will be better if the precipitation intensity is stronger and the valid forecast periods is longer. It should be noted that there is no need to select models before using the WPM-best method, because WPM-best can give a very low weight to the less-skillful model in a more objective way. (4) The improved WPM method is also applied to investigate the heavy-rainfall case induced by typhoon Mekkhala (2020), where the improved WPM technique significantly improves rainstorm forecasting ability compared with a single model.
Subject
Atmospheric Science,Environmental Science (miscellaneous)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献