Simulation of Doppler Lidar Measurement Range and Data Availability

Author:

Boquet Matthieu1,Royer Philippe1,Cariou Jean-Pierre1,Machta Mehdi1,Valla Matthieu2

Affiliation:

1. Leosphere, Paris, France

2. ONERA, Palaiseau, France

Abstract

AbstractThe measurement range of a coherent wind Doppler lidar (CWDL) along a laser beam is the maximum distance from the lidar where wind speed data are accurately retrieved. It means that, at this distance, a sufficient number of emitted laser photons are backscattered and received by the lidar. Understanding of the propagation of the laser through the atmosphere, and particularly the backscattering and extinction processes from aerosols, is therefore important to estimate the metrological performances of a CWDL instrument. The range is directly related to specific instrument characteristics and atmospheric content, such as the aerosols type, size, and density distributions. Associated with the measurement range is the notion of data availability, which can be defined, at a given range and over a time period, as the percentage number of data retrieved correctly by the CWDL over the total number of measurement attempts.This paper proposes a new approach to predict the CWDL data availability and range of measurement using both instrumental simulation and atmospheric observations of aerosol optical properties from weather stations and simulations. This method is applied in several CWDL measurement campaigns during which estimated data availabilities and ranges are compared with the observations. It is shown that it is fairly possible to anticipate the data availability and the range coverage of CWDL technology at any site of interest where atmospheric data are available. The method also offers an additional way to diagnose the operation of the instrument and will help in the design of future instruments.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3