Boundary Layer Height Characteristics in Mexico City from Two Remote Sensing Techniques

Author:

Burgos-Cuevas AndreaORCID,Magaldi Adolfo,Adams David K.,Grutter MichelORCID,García Franco Jorge L.,Ruiz-Angulo Angel

Abstract

AbstractThe Atmospheric Boundary Layer (ABL) height is a key parameter in air quality research as well as for numerical simulations and forecasts. The identification of thermally stable layers, often with radiosondes, has been a common approach for estimating ABL height, though with limited temporal coverage. Remote sensing techniques offer essentially continuous measurements. Nevertheless, ABL height retrievals from different methods can vary greatly when compared, which is particularly notable for topographically complex terrains, such as that surrounding Mexico City. This study, employing one year of data in Mexico City, reveals that the daytime convective boundary layer height (retrieved from Doppler lidar data) is typically lower than the aerosol layer height (retrieved from ceilometer data). Although both estimated heights evolved diurnally, the more elevated aerosol layer decays more slowly, suggesting that the mechanisms that elevate aerosols are not limited to convective motions. Additionally, both diurnal and seasonal variability are investigated, comparing remotely sensed-retrieved heights with thermally stable layers estimated from radiosonde data. Multiple stable layers often develop, those at higher levels have similar values to the ceilometer-retrieved heights, while stable layers at lower heights are similar to Doppler lidar height retrievals. The present research constitutes the first detailed analysis of ceilometer backscatter and Doppler lidar thresholding methods for estimating ABL height over Mexico City, and our results illustrate the complexity of mixing mechanisms on the ABL in this region of complex orography.

Funder

Universität zu Köln

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3