Assessing Dual-Polarization Radar Estimates of Extreme Rainfall during Hurricane Harvey

Author:

Wolff David B.1ORCID,Petersen Walter A.2,Tokay Ali3,Marks David A.4,Pippitt Jason L.5

Affiliation:

1. Wallops Flight Facility, NASA Goddard Space Flight Center, Wallops Island, Virginia

2. NASA Marshall Space Flight Center, Huntsville, Alabama

3. Joint Center for Earth Systems Technology, University of Maryland, Baltimore County, Baltimore, and NASA Goddard Space Flight Center, Greenbelt, Maryland

4. Science Systems and Applications, Inc., Lanham, Maryland, and Wallops Flight Facility, NASA Goddard Space Flight Center, Wallops Island, Virginia

5. Science Systems and Applications, Inc., Lanham, and NASA Goddard Space Flight Center, Greenbelt, Maryland

Abstract

AbstractHurricane Harvey hit the Texas Gulf Coast as a major hurricane on 25 August 2017 before exiting the state as a tropical storm on 29 August 2017. Left in its wake was historic flooding, with some locations measuring more than 60 in. (150 cm) of rain over a 5-day period. The WSR-88D radar (KHGX) maintained operations for the entirety of the event. Rain gauge data from the Harris County Flood Warning System (HCFWS) was used for validation with the full radar dataset to retrieve daily and event-total precipitation estimates for the period 25–29 August 2017. The KHGX precipitation estimates were then compared with the HCFWS gauges. Three different hybrid polarimetric rainfall retrievals were used, along with attenuation-based retrieval that employs the radar-observed differential propagation. An advantage of using a attenuation-based retrieval is its immunity to partial beam blockage and calibration errors in reflectivity and differential reflectivity. All of the retrievals are susceptible to changes in the observed drop size distribution (DSD). No in situ DSD data were available over the study area, so changes in the DSD were interpreted by examining the observed radar data. We examined the parameter space of two key values in the attenuation retrieval to test the sensitivity of the rain retrieval. Selecting a value of α = 0.015 and β = 0.600 provided the best overall results, relative to the gauges, but more work needs to be done to develop an automated technique to account for changes in the ambient DSD.

Funder

NASA Precipitation Measurement Mission and the GPM Ground Validation program

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3