Polarimetric Signatures in Landfalling Tropical Cyclones

Author:

Homeyer Cameron R.1,Fierro Alexandre O.23,Schenkel Benjamin A.23,Didlake Anthony C.4,McFarquhar Greg M.21,Hu Jiaxi23,Ryzhkov Alexander V.23,Basara Jeffrey B.15,Murphy Amanda M.12,Zawislak Jonathan67

Affiliation:

1. a School of Meteorology, University of Oklahoma, Norman, Oklahoma

2. b Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma

3. c NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

4. d Department of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania

5. e School of Civil Engineering and Environmental Science, University of Oklahoma, Norman, Oklahoma

6. f Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, Florida

7. g NOAA/Atlantic Oceanographic and Meteorological Laboratory/Hurricane Research Division, Miami, Florida

Abstract

AbstractPolarimetric radar observations from the NEXRAD WSR-88D operational radar network in the contiguous United States, routinely available since 2013, are used to reveal three prominent microphysical signatures in landfalling tropical cyclones: 1) hydrometeor size sorting within the eyewall convection, 2) vertical displacement of the melting layer within the inner core, and 3) dendritic growth layers within stratiform regions of the inner core. Size sorting signatures within eyewall convection are observed with greater frequency and prominence in more intense hurricanes, and are observed predominantly within the deep-layer environmental wind shear vector-relative quadrants that harbor the greatest frequency of deep convection (i.e., downshear and left-of-shear). Melting-layer displacements are shown that exceed 1 km in altitude compared to melting-layer altitudes in outer rainbands and are complemented by analyses of archived dropsonde data. Dendritic growth and attendant snow aggregation signatures in the inner core are found to occur more often when echo-top altitudes are low (≤10 km MSL), nearer the −15°C isotherm commonly associated with dendritic growth. These signatures, uniquely observed by polarimetric radar, provide greater insight into the physical structure and thermodynamic characteristics of tropical cyclones, which are important for improving rainfall estimation and the representation of tropical cyclones in numerical models.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3