Ranging through Shallow Semitransparent Media with Polarization Lidar

Author:

Mitchell Steven E.1,Thayer Jeffrey P.1

Affiliation:

1. Department of Aerospace Engineering Sciences, University of Colorado Boulder, Boulder, Colorado

Abstract

Abstract A new approach to shallow depth measurement (<2 m) using polarization lidar is presented. The transmitter consists of a 532-nm linearly polarized laser coupled with conditioning and polarization optics. The prototype lidar evaluates the differing polarization attributes of signals scattered from semitransparent media surfaces, simultaneously receiving signals polarized in the planes parallel and perpendicular to the transmitted laser signal via dual photomultiplier tubes. In the event the first surface nearly preserves the incident polarization and the second surface depolarizes the incident energy, signals scattered from the second surface are isolated from the first by a polarization analyzer in the receiver. This approach translates depth measurements into the conditions of single surface range measurements, giving the ability to resolve extremely shallow depths (e.g., 1 cm) independent of laser or detector pulse widths. This approach can circumvent dead time issues in photon-counting systems and can be applied to extremely shallow and deeper waters for depth determination. Furthermore, the approach provides an estimate of the first surface linear depolarization ratio, enabling differentiation between surfaces with variable scattering properties. Using this technique to acquire range-resolved observations through shallow semitransparent media to measure depth removes the dependency on sophisticated and, subsequently, costly lidar components by becoming independent of system bandwidth. The limiting factor in-depth resolution is driven only by the timing resolution of the time-to-digital converter. This approach allows for the use of common lasers, optics, and detector equipment, making it comparatively cheaper and less complex while achieving vast improvement in the accuracy and precision of shallow depth measurements.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3