Affiliation:
1. State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
Abstract
The Monte Carlo (MC) simulation, due to its ability to accurately simulate the backscattered signal of lidar, plays a crucial role in the design, optimization, and interpretation of the backscattered signal in lidar systems. Despite the development of several MC models for lidars, a suitable MC simulation model for underwater single-photon lidar, which is a vital ocean remote sensing technique utilized in underwater scientific investigations, obstacle avoidance for underwater platforms, and deep-sea environmental exploration, is still lacking. There are two main challenges in underwater lidar simulation. Firstly, the simulation results are significantly affected by near-field abnormal signals. Secondly, the simulation process is time-consuming due to the requirement of a high number of random processes to obtain reliable results. To address these issues, an algorithm is proposed to minimize the impacts of abnormal simulation signals. Additionally, a graphics processing unit (GPU)-accelerated semi-analytic MC simulation with a compute unified device architecture is proposed. The performance of the GPU-based program was validated using 109 photons and compared to a central processing unit (CPU)-based program. The GPU-based program achieved up to 68 times higher efficiency and a maximum relative deviation of less than 1.5%. Subsequently, the MC model was employed to simulate the backscattered signal in inhomogeneous water using the Henyey–Greenstein phase functions. By utilizing the look-up table method, simulations of backscattered signals were achieved using different scattering phase functions. Finally, a comparison between the simulation results and measurements derived from an underwater single-photon lidar demonstrated the reliability and robustness of our GPU-based MC simulation model.
Funder
National Key Research and Development Program of China
Joint Funds of the National Natural Science Foundation of China
Natural Science Foundation of Fujian Province of China
MEL-RLAB Joint Fund for Marine Science and Technology Innovation
Subject
General Earth and Planetary Sciences
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献