Day and night continuous high-resolution shallow-water depth detection with single-photon underwater lidar

Author:

Shangguan Mingjia,Weng Zhenwu,Lin Zaifa,Lee Zhongping,Shangguan Mingyu1,Yang Zhifeng,Sun Jiaxin,Wu Tengfei2,Zhang Yu,Wen Cehnglu3

Affiliation:

1. Fuzhou Dayu Electronic Technology Co., Ltd

2. Aviation Industry Corporation of China

3. Xiamen University

Abstract

Single-photon lidar has emerged as a strong technology for bathymetric measurements. However, its heightened sensitivity additionally makes it susceptible to solar radiation noise, particularly in the green light wavelength where solar radiation is strong, posing challenges for its daytime operation. To address this issue, a single-photon underwater lidar system is proposed and demonstrated. This scheme has these features. 1) Underwater applications not only mitigate the impact of the air-water interface on laser transmission but also significantly attenuate solar radiation reaching the lidar due to the absorption and scattering properties of water. 2) The telescope is designed with a small aperture and narrow field of view to significantly suppress solar radiation. 3) A combination of a narrowband laser and narrowband filter technique is effectively employed to minimize residual solar radiation, thus enabling continuous bathymetric observation capabilities during both day and night. 4) After acquiring the backscattered signal from the bottom, a water depth extraction algorithm utilizing bi-Gaussian fitting is proposed. To demonstrate the robustness of the lidar and the effectiveness of the algorithm, the underwater single-photon lidar system is deployed on a ship to conduct cruise surveys of two bays in the nearshore area, as well as a full-day stationary observation experiment. The lidar measurements are highly consistent with the synchronized sonar observations. The full-day stationary observation experiment showcased its capability to deliver continuous measurements throughout the day and night. These results demonstrate the potential of the system in various applications, including high-precision underwater terrain mapping, obstacle avoidance for underwater platforms, and underwater target imaging.

Funder

National Key Research and Development Program of China

Blue Carbon Ecosystem Assessment, Restoration and Accounting: A Tencent supported project

Innovation Program for Quantum Science and Technology

National Natural Science Foundation of China

Natural Science Foundation of Fujian Province

Fujian Provincial Central Guided Local Science and Technology Development Special Project

MEL-RLAB Joint Fund for Marine Science & Technology Innovation.

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3