Shipborne single-photon fluorescence oceanic lidar: instrumentation and inversion

Author:

Shangguan Mingjia,Guo Yirui,Liao Zhuoyang

Abstract

Laser-induced fluorescence (LIF) technology has been widely applied in remote sensing of aquatic phytoplankton. However, due to the weak fluorescence signal induced by laser excitation and the significant attenuation of laser in water, profiling detection becomes challenging. Moreover, it remains difficult to simultaneously retrieve the attenuation coefficient (K l i d a r m f ) and the fluorescence volume scattering function at 180° (βf) through a single fluorescence lidar. To address these issues, a novel all-fiber fluorescence oceanic lidar is proposed, characterized by: 1) obtaining subsurface fluorescence profiles using single-photon detection technology, and 2) introducing the Klett inversion method for fluorescence lidar to simultaneously retrieve K l i d a r m f and βf. According to theoretical analysis, the maximum relative error of βf for the chlorophyll concentration ranging from 0.01 mg/m3 to 10 mg/m3 within a water depth of 10 m is less than 20%, while the maximum relative error of K l i d a r m f is less than 10%. Finally, the shipborne single-photon fluorescence lidar was deployed on the experimental vessel for continuous experiments of over 9 hours at fixed stations in the offshore area, validating its profiling detection capability. These results demonstrate the potential of lidar in profiling detection of aquatic phytoplankton, providing support for studying the dynamic changes and environmental responses of subsurface phytoplankton.

Funder

National Key Research and Development Program of China

Blue Carbon Ecosystem Assessment, Restoration and Accounting: A Tencent supported project

Innovation Program for Quantum Science and Technology

National Natural Science Foundation of China

Natural Science Foundation of Fujian Province

Fujian Provincial Central Guided Local Science and Technology Development Special Project

MEL-RLAB Joint Fund for Marine Science & Technology Innovation

Publisher

Optica Publishing Group

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3