Calibration and Validation of HY-2 Altimeter Wave Height

Author:

Liu Qingxiang123,Babanin Alexander V.3,Guan Changlong12,Zieger Stefan3,Sun Jian12,Jia Yongjun4

Affiliation:

1. * Physical Oceanography Laboratory, Ocean University of China, Qingdao, China

2. + Qingdao Collaborative Innovation Center of Marine Science and Technology, Ocean University of China, Qingdao, China

3. # Faculty of Science, Engineering and Technology, Swinburne University of Technology, Melbourne, Victoria, Australia

4. @ National Satellite Ocean Application Service, State Oceanic Administration, Beijing, China

Abstract

AbstractHai Yang-2 (HY-2) satellite altimeter measurements of significant wave height () are analyzed over the period from 1 October 2011 to 6 December 2014. They are calibrated and validated against in situ buoys and other concurrently operating altimeters: Jason-2, CryoSat-2, and Satellite with Argos and ALtiKa (SARAL). In general, the HY-2 altimeter measurements agree well with buoy measurements, with a bias of −0.22 m and a root-mean-square error (RMSE) of 0.30 m. When the reduced major axis (RMA) regression procedure was applied to the entire period, the RMSE was reduced by 33% to 0.2 m. A further comparison with other satellite altimeters, however, revealed two additional features of HY-2 estimates over this period. First, a noticeable mismatch is present between HY-2 and the other satellite altimeters for high seas ( > 6 m). Second, a jump increase in HY-2 values was detected starting in April 2013, which was associated with the switch to backup status of the HY-2 sensors and the subsequent update of its data processing software. Although reported by previous studies, these two deficiencies had not been accounted for in calibrations. Therefore, the HY-2 wave height records are now subdivided into two phases (time periods pre- and post-April 2013) and a two-branched calibration is proposed for each phase. These revised calibrations, validated throughout the range of significant wave heights of 1–9 m, are expected to improve the practical applicability of HY-2 measurements significantly.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3