Calibration of CFOSAT Off‐Nadir SWIM SWH Product Based on CNN‐LSTM Model

Author:

Zhang Rui1ORCID,Qi Jinpeng12,Yan Qiushuang1ORCID,Fan Chenqing2ORCID,Yang Yuchao1,Zhang Jie123ORCID,Wan Yong1

Affiliation:

1. College of Oceanography and Space Informatics China University of Petroleum Qingdao China

2. First Institute of Oceanography Ministry of Natural Resources Qingdao China

3. Technology Innovation Center for Ocean Telemetry Ministry of Natural Resources Qingdao China

Abstract

AbstractHigh‐precision observation of significant wave height (SWH) is crucial for marine research. The Surface Waves Investigation and Monitoring (SWIM) aboard the China France Oceanography Satellite (CFOSAT) provides the ocean wave spectrum that allows for the calculation of the off‐nadir SWH parameters, but there exists a certain bias with the in‐situ SWH values. To improve the accuracy of the SWH calculation bias from the off‐nadir 6°, 8°, 10° wave spectra and the whole combined spectrum, this paper establishes a spatio‐temporal hybrid model that combines convolutional neural network (CNN) and long short‐term memory network (LSTM). Additionally, to further correct bias exhibited under high sea state, we introduce a bias correction module based on deep neural network (DNN) to adjust the SWIM off‐nadir SWH greater than 4 m. The experimental results demonstrate a significant enhancement in the accuracy of corrected SWIM off‐nadir SWH, and the best calibration result is 10° with 0.267 m root mean square error (RMSE), and 0.979 correlation coefficient (R) compared with the ERA5 value. We conducted a comprehensive study and analysis on the performance of the proposed model under different wave heights, extreme sea states, and wind and swell regions. Meanwhile, the buoy and altimeters are leveraged to render further evaluation the RMSE of the corrected SWH is less than 0.5 m.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Publisher

American Geophysical Union (AGU)

Reference53 articles.

1. Wind waves;Ardhuin F.;New Frontiers in Operational Oceanography,2018

2. AVISO CNES Data Center. (2018).JASON‐3 geophysical data records (GDR)[Dataset].AVISO CNES Data Center. Retrieved fromhttps://aviso‐data‐center.cnes.fr/

3. A multi-sensor approach for the on-orbit validation of ocean color satellite data products

4. Orbit Performances Validation for CFOSAT Scatterometer

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3