Sensitivity Analysis of Forecasting Performance for ST6 Parameterization in High-Resolution Wave Model Based on WAVEWATCH III

Author:

Roh Min1ORCID,Oh Sang-Myeong2,Chang Pil-Hun2,Kang Hyun-Suk2,Kim Hyung-Suk3

Affiliation:

1. Ocean Space Development and Energy Research Department, Korea Institute of Ocean Science and Technology, Busan 49111, Republic of Korea

2. Forecast Research Department, National Institute of Meteorological Sciences, Seogwipo-si 63568, Republic of Korea

3. Department of Civil Engineering, Kunsan National University, Gunsan-si 54150, Republic of Korea

Abstract

A regional wave forecasting system in East Asia, including the Korean Peninsula, was built based on WAVEWATCH III using offshore wind forecast data from the Global Data Assimilation Prediction System. The numerical simulations were performed on the sensitivity of the interaction between input wind and wave development. The forecasts for each condition were compared and verified with the observational data of marine meteorological buoys from 1 August to 30 September 2020. The sensitivity conditions were configured to have a specific range of variables related to the directional distribution of input winds (SINA0) and variables indicating the development of input wind–wave (CDFAC) in the ST6. The results were presented by calculating the mean error and root mean square error for all observation points. Overall, as the CDFAC increased, the mean error tended to decrease according to the forecast time and the root mean square error increased. Although the effect of SINA0 at the same CDFAC was insignificant, when SINA0 increased in sections where the significant wave height decreased rapidly, the significant wave height tended to decrease. In addition, the main variables that affect the physical process of wind–wave interaction should be considered to improve wave model forecasting performance and accuracy.

Funder

Korea Meteorological Administration

Ministry of Education

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3