SFMR Surface Wind Undersampling over the Tropical Cyclone Life Cycle

Author:

Klotz Bradley W.1,Nolan David S.2

Affiliation:

1. Cooperative Institute for Marine and Atmospheric Studies, University of Miami, and NOAA/AOML/Hurricane Research Division, Miami, Florida

2. Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Abstract

Surface wind speeds in tropical cyclones are important for defining current intensity and intensification. Traditionally, airborne observations provide the best information about the surface wind speeds, with the Stepped Frequency Microwave Radiometer (SFMR) providing a key role in obtaining such data. However, the flight patterns conducted by hurricane hunter aircraft are limited in their azimuthal coverage of the surface wind field, resulting in an undersampling of the wind field and consequent underestimation of the peak 10-m wind speed. A previous study provided quantitative estimates of the average underestimate for a very strong hurricane. However, no broader guidance on applying a correction based on undersampling has been presented in detail. To accomplish this task, a modified observing system simulation experiment with five hurricane simulations is used to perform a statistical evaluation of the peak wind speed underestimate over different stages of the tropical cyclone life cycle. Analysis of numerous simulated flights highlights prominent relationships between wind speed undersampling and storm size, where size is defined by the radius of maximum wind speed (RMW). For example, an intense hurricane with small RMW needs negligible correction, while a large-RMW tropical storm requires a 16%–19% change. A lookup table of undersampling correction factors as a function of peak SFMR wind speed and RMW is provided to assist the tropical cyclone operations community. Implications for hurricane best track intensity estimates are also discussed using real data from past Atlantic hurricane seasons.

Funder

National Oceanic and Atmospheric Administration

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3