An Automated Method to Analyze Tropical Cyclone Surface Winds from Real-Time Aircraft Reconnaissance Observations

Author:

Knaff John A.1ORCID,Slocum Christopher J.1

Affiliation:

1. a Center for Satellite Applications and Research, NOAA, Fort Collins, Colorado

Abstract

Abstract This study describes an automated analysis of real-time tropical cyclone (TC) aircraft reconnaissance observations to estimate TC surface winds. The wind analysis uses an iterative, objective, data-weighted analysis approach with different smoothing constraints in the radial and azimuthal directions. Smoothing constraints penalize the data misfit when the solutions deviate from smoothed analyses and extend the aircraft information into areas not directly observed. The analysis composites observations following storm motion taken within 5 h prior and 3 h after analysis time and makes use of prescribed methods to move observations to a common flight level (CFL; 700 hPa) for analysis and to reduce reconnaissance observations to the surface. Comparing analyses to several observed and simulated wind fields shows that analyses fit the observations while extending observational information to poorly observed regions. However, resulting analyses tend toward greater symmetry as observational coverage decreases, and show sensitivity to the first guess information in unobserved radii. Analyses produce reasonable and useful estimates of operationally important characteristics of the wind field. But, due to the radial and azimuthal smoothing and the undersampling of typical aircraft reconnaissance flights, wind maxima are underestimated, and the radii of maximum wind are slightly overestimated. Varying observational coverage using model-based synthetic aircraft observations, these analyses improve as observational coverage increases, and for a typical observational pattern (two transects through the storm) the root-mean-square error deviation is <10 kt (<5 m s−1). Significance Statement Many applications need estimates of 2D surface winds in tropical cyclones in real time. While real-time aircraft-based observations of the winds inside tropical cyclones have been available for several decades, there have been few automated and objective methods to analyze this information to provide estimates of the strength and distribution of the surface winds. Here, we provide details of one method that fuses these unique observations to provide useful 2D analyses of the winds in and around tropical cyclones.

Funder

National Oceanic and Atmospheric Administration

National Environmental Satellite, Data, and Information Service

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference57 articles.

1. A technique for maximizing details in numerical weather map analysis;Barnes, S.,1964

2. Beven, J. L., II, R. Berg, and A. Hagen, 2019: Tropical cyclone report: Hurricane Michael (7–11 October 2018). NHC Tech. Rep. AL142018, 86 pp., https://www.nhc.noaa.gov/data/tcr/AL142018_Michael.pdf.

3. Landscape and regional impacts of hurricanes in New England;Boose, E. R.,2001

4. Brennan, M. J., 2019: NHC’s use of aircraft data in hurricane analysis. SECART 2019 Resilience Webinar Series, 22 pp., https://www.noaa.gov/sites/default/files/legacy/document/2020/Dec/SECARTwebinar-Brennan-sm.pdf.

5. Cangialosi, J. P., and R. Berg, 2021: Tropical cyclone report: Hurricane Delta (4–10 October 2020). NHC Tech. Rep. AL262020, 46 pp., https://www.nhc.noaa.gov/data/tcr/AL262020_Delta.pdf.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3