A Statistical Analysis of High-Frequency Track and Intensity Forecasts from NOAA’s Operational Hurricane Weather Research and Forecasting (HWRF) Modeling System

Author:

Zhang Zhan1,Zhang Jun A.23,Alaka Ghassan J.2,Wu Keqin14,Mehra Avichal1,Tallapragada Vijay1

Affiliation:

1. a NOAA/NWS/NCEP/Environmental Modeling Center, College Park, Maryland

2. b NOAA/AOML/Hurricane Research Division, Miami, Florida

3. c Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, Florida

4. d I.M. System Group, Rockville, Maryland

Abstract

AbstractA statistical analysis is performed on the high-frequency (3⅓ s) output from NOAA’s cloud-permitting, high-resolution operational Hurricane Weather Research and Forecasting (HWRF) Model for all tropical cyclones (TCs) in the North Atlantic Ocean basin over a 3-yr period (2017–19). High-frequency HWRF forecasts of TC track and 10-m maximum wind speed (Vmax) exhibited large fluctuations that were not captured by traditional low-frequency (6 h) model output. Track fluctuations were inversely proportional to Vmax, with average values of 6–8 km. The Vmax fluctuations were as high as 20 kt (10.3 m s−1) in individual forecasts and were a function of maximum intensity, with a standard deviation of 5.5 kt (2.8 m s−1) for category-2 hurricanes and smaller fluctuations for tropical storms and major hurricanes. The radius of Vmax contracted or remained steady when TCs rapidly intensified in high-frequency HWRF forecasts, consistent with observations. Running-mean windows of 3–9 h were applied at synoptic times to smooth the high-frequency HWRF output to investigate its utility to operational forecasting. Smoothed high-frequency HWRF output improved Vmax forecast skill by up to 8% and produced a more realistic distribution of 6-h intensity change when compared with low-frequency, instantaneous output. Furthermore, the high-frequency track forecast output may be useful for investigating characteristics of TC trochoidal motions.

Funder

NCEP/EMC

National Oceanic and Atmospheric Administration

office of naval research

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3