Reverse Engineering the Tropical Precipitation–Buoyancy Relationship

Author:

Ahmed Fiaz1,Neelin J. David1

Affiliation:

1. Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California

Abstract

The tropical precipitation–moisture relationship, characterized by rapid increases in precipitation for modest increases in moisture, is conceptually recast in a framework relevant to plume buoyancy and conditional instability in the tropics. The working hypothesis in this framework links the rapid onset of precipitation to integrated buoyancy in the lower troposphere. An analytical expression that relates the buoyancy of an entraining plume to the vertical thermodynamic structure is derived. The natural variables in this framework are saturation and subsaturation equivalent potential temperatures, which capture the leading-order temperature and moisture variations, respectively. The use of layer averages simplifies the analytical and subsequent numerical treatment. Three distinct layers, the boundary layer, the lower free troposphere, and the midtroposphere, adequately capture the vertical variations in the thermodynamic structure. The influence of each environmental layer on the plume is assumed to occur via lateral entrainment, corresponding to an assumed mass-flux profile. The fractional contribution of each layer to the midlevel plume buoyancy (i.e., the layer weight) is estimated from TRMM 3B42 precipitation and ERA-Interim thermodynamic profiles. The layer weights are used to “reverse engineer” a deep-inflow mass-flux profile that is nominally descriptive of the tropical atmosphere through the onset of deep convection. The layer weights—which are nearly the same for each of the layers—constitute an environmental influence function and are also used to compute a free-tropospheric integrated buoyancy measure. This measure is shown to be an effective predictor of onset in conditionally averaged precipitation across the global tropics—over both land and ocean.

Funder

National Science Foundation

National Oceanic and Atmospheric Administration

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3