Observed Storm Track Dynamics in Drake Passage

Author:

Foppert Annie1

Affiliation:

1. Centre for Southern Hemisphere Oceans Research, CSIRO Oceans and Atmosphere, Hobart, Tasmania, Australia

Abstract

AbstractThe dynamics of an oceanic storm track—where energy and enstrophy transfer between the mean flow and eddies—are investigated using observations from an eddy-rich region of the Antarctic Circumpolar Current downstream of the Shackleton Fracture Zone (SFZ) in Drake Passage. Four years of measurements by an array of current- and pressure-recording inverted echo sounders deployed between November 2007 and November 2011 are used to diagnose eddy–mean flow interactions and provide insight into physical mechanisms for these transfers. Averaged within the upper to mid-water column (400–1000-m depth) and over the 4-yr-record mean field, eddy potential energy is highest in the western part of the storm track and maximum eddy kinetic energy occurs farther away from the SFZ, shifting the proportion of eddy energies from to about 1 along the storm track. There are enhanced mean 3D wave activity fluxes immediately downstream of SFZ with strong horizontal flux vectors emanating northeast from this region. Similar patterns across composites of Polar Front and Subantarctic Front meander intrusions suggest the dynamics are set more so by the presence of the SFZ than by the eddy’s sign. A case study showing the evolution of a single eddy event, from 15 to 23 July 2010, highlights the storm-track dynamics in a series of snapshots. Consistently, explaining the eddy energetics pattern requires both horizontal and vertical components of W, implying the importance of barotropic and baroclinic processes and instabilities in controlling storm-track dynamics in Drake Passage.

Funder

National Science Foundation

Publisher

American Meteorological Society

Subject

Oceanography

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3