Affiliation:
1. California Institute of Technology, Pasadena, California
Abstract
Abstract
Diagnostics of ocean variability that reflect and influence local transport properties of heat and chemical species vary by an order of magnitude along the Southern Ocean’s Antarctic Circumpolar Current (ACC). Topographic “hotspots” are important regions of localized transport anomalies. This study uses a primitive equation channel model to investigate the structure of eddy kinetic energy (EKE), one measure of variability, in an oceanic regime. A storm-track approach emphasizes the importance of stationary eddies, which result from flow interactions with topography, on setting EKE distributions. The influence of these interactions extends far downstream of the topography and impacts EKE patterns through localized convergence and divergence of heat. Unlike for zonal averages, local contributions to the stationary fluxes from terms that integrate to zero in a zonal average are important. The simulations show a strong sensitivity of the zonal structure as well as the distribution and amplitude of stationary eddy fluxes to the surface wind forcing. By focusing on local, time-averaged stationary eddy fluxes, insight into the dynamical structure of the ACC can be gained that is concealed in the averaging procedure associated with traditional zonal or along-stream analyses.
Publisher
American Meteorological Society
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献