Origin and Attenuation of Mesoscale Structure in Circumpolar Deep Water Intrusions to an Antarctic Shelf

Author:

McKee Darren C.1,Martinson Douglas G.1,Schofield Oscar2

Affiliation:

1. Division of Ocean and Climate Physics, Lamont–Doherty Earth Observatory of Columbia University, Palisades, and Department of Earth and Environmental Sciences, Columbia University, New York, New York

2. Center for Ocean Observing Leadership, Department of Marine and Coastal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey

Abstract

AbstractCross-isobath transport of Upper Circumpolar Deep Water (UCDW) provides a major source of heat to the Antarctic continental shelves. Adaptive sampling with a Slocum glider revealed that the UCDW regularly intrudes onto the western Antarctic Peninsula shelf within mesoscale eddies, and a linear stability analysis of the shelf-break current upstream confirmed eddy length scales and vertical structure are consistent with the baroclinic instability of the current. The properties of the most unstable mode are insensitive to current orientation but sensitive to bottom slope in accordance with modified Eady theory. Once on the shelf, the eddies’ core properties mix with ambient shelf water to form modified CDW (mCDW). Concurrent shipboard CTD and ADCP data are used to diagnose the responsible mixing processes and highlight the importance of thermohaline intrusions. The genesis mechanism of the interleaving layers cannot be confirmed, however a simple analytic model suggests the upper limit contribution of advection by internal waves cannot account for the observed temperature variance unless the cross-eddy temperature gradient is large. Data-adaptive sampling of an eddy with the glider revealed it lost heat across two isopycnals and a fixed radius at a rate of 7 × 109 J s−1 over 3.9 days. This rate is corroborated by a diffusion model initialized with the eddy’s initial hydrographic properties and informed by the heat fluxes parameterized from the shipboard data. The results suggest eddies predominately lose heat laterally and downward, which preserves subsurface heat for melting of marine-terminating glaciers.

Funder

National Science Foundation

National Aeronautics and Space Administration

Publisher

American Meteorological Society

Subject

Oceanography

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3