Decadal Trends in the Southern Ocean Meridional Eddy Heat Transport

Author:

Liu Yinxing12,Zhang Zhiwei13,Yuan Qingguo1,Zhao Wei13

Affiliation:

1. a Frontier Science Center for Deep Ocean Multispheres and Earth System and Physical Oceanography Laboratory/Key Laboratory of Ocean Observation and Information of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya, China

2. c Academy of the Future Ocean, Ocean University of China, Qingdao, China

3. b Laoshan Laboratory, Qingdao, China

Abstract

Abstract Meridional heat transport induced by oceanic mesoscale eddies (EHT) plays a significant role in the heat budget of the Southern Ocean (SO) but the decadal trends in EHT and its associated mechanisms are still obscure. Here, this scientific issue is investigated by combining concurrent satellite observations and Estimating the Circulation and Climate of the Ocean, Phase II (ECCO2) reanalysis data over the 24 years between 1993 and 2016. The results reveal that the surface EHTs from both satellite and ECCO2 data consistently show decadal poleward increasing trends in the SO, particularly in the latitude band of the Antarctic Circumpolar Current (ACC). In terms of average in the ACC band, the ECCO2-derived EHT over the upper 1000 m has a linear trend of 1.1 × 10−2 PW decade−1 or 16% per decade compared with its time-mean value of 0.07 PW. Diagnostic analysis based on “mixing length” theory suggests that the decadal strengthening of eddy kinetic energy (EKE) is the dominant mechanism for the increase in EHT in the SO. By performing an energy budget analysis, we further find that the decadal increase in EKE is mainly caused by the strengthened baroclinic instability of large-scale circulation that converts more available potential energy to EKE. For the strengthened baroclinic instability in the SO, it is attributed to the increasing large-scale wind stress work on the large-scale circulation corresponding to the positive phase of the Southern Annular Mode between 1993 and 2016. The decadal trends in EHT identified here may help understand decadal variations of heat storage and sea ice extent in the SO. Significance Statement Oceanic mesoscale-eddy-induced meridional heat transport (EHT) is a key process of heat redistribution in the Southern Ocean (SO), but the decadal variations of EHT and the associated mechanisms remain obscure. Here, by analyzing satellite and reanalysis data between 1993 and 2016, we find that the poleward EHT has significant decadal increasing trends in the SO, particularly in the Antarctic Circumpolar Current latitude band. Further analysis suggests that the increasing EHT is mainly caused by enhanced eddy kinetic energy converted by the strengthened baroclinic instability of large-scale circulation, which is attributed to the strengthening winds modulated by the Southern Annular Mode. The above findings may improve our understanding of the decadal variations of heat storage and sea ice extent in the SO.

Funder

National Natural Science Foundation of China

Key Technologies Research and Development Program

Taishan Scholar Foundation of Shandong Province

Natural Science Foundation of Shandong Province

Publisher

American Meteorological Society

Reference76 articles.

1. Evolution of the Southern Annular Mode during the past millennium;Abram, N. J.,2014

2. A long-term record of blended satellite and in situ sea-surface temperature for climate monitoring, modeling and environmental studies;Banzon, V.,2016

3. Can Southern Ocean eddy effects be parameterized in climate models?;Bryan, F. O.,2014

4. Poleward heat flux and conversion of available potential energy in Drake Passage;Bryden, H. L.,1979

5. Energetic eddies at the northern edge of the Antarctic Circumpolar Current in the Southwest Pacific;Bryden, H. L.,1985

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3