Diffusion of Circumpolar Deep Water Towards Antarctica

Author:

Yamazaki Kaihe1234ORCID,Aoki Shigeru1ORCID,Mizobata Kohei5ORCID

Affiliation:

1. Institute of Low Temperature Science Hokkaido University Sapporo Japan

2. Graduate School of Environmental Science Hokkaido University Sapporo Japan

3. National Institute of Polar Research Tachikawa Japan

4. Now at Institute for Marine and Antarctic Studies University of Tasmania TAS Hobart Australia

5. Tokyo University of Marine Science and Technology Tokyo Japan

Abstract

AbstractWarm, salty Circumpolar Deep Water (CDW) is recognized as the primary driver for Antarctic glacial melt, but the mechanism by which it reaches the continental shelves remains highly uncertain from an observational standpoint. With the scarcity of eddy flux estimation in the Antarctic margin, we quantify the isopycnal diffusivity of CDW using hydrographic variability and satellite altimetry under the mixing length framework. For comparison, the spiciness and thickness are used as isopycnal tracers, and the two tracers yield qualitatively similar estimates. Over the Antarctic Circumpolar Current (ACC), variation of mixing length is generally aligned with the jet‐induced mixing suppression, including in areas where topography blocks the jet's influence. In contrast, the mixing length does not depend on the mean flow in the subpolar zone, likely reflecting the relatively quiescent flow regime. The estimated isopycnal diffusivity ranges from 100 to 500 m2 s−1 south of the ACC. The eddy diffusivity tends to be enhanced where the gradient of isopycnal thickness becomes small and CDW intrudes onshore. The cross‐slope eddy CDW flux is estimated, and the associated onshore heat flux across is calculated as ∼3.6 TW in the eastern Indian sector. The eddy heat flux and coastal solar heating are generally balanced with cryospheric heat sinks including glacial melting and surface freezing, suggesting that the eddy advection is substantial for the onshore CDW flux. The thickness field is essential for determining mixing length and eddy fluxes in the subpolar zone, however this is not the case in the ACC domain.

Funder

Japan Society for the Promotion of Science

Publisher

American Geophysical Union (AGU)

Subject

Earth and Planetary Sciences (miscellaneous),Space and Planetary Science,Geochemistry and Petrology,Geophysics,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3