Bathymetric Influence on the Coastal Sea Level Response to Ocean Gyres at Western Boundaries

Author:

Wise Anthony1,Hughes Chris W.2,Polton Jeff A.3

Affiliation:

1. National Oceanography Centre, and Department of Earth and Ocean Sciences, University of Liverpool, Liverpool, United Kingdom

2. Department of Earth and Ocean Sciences, University of Liverpool, and National Oceanography Centre, Liverpool, United Kingdom

3. National Oceanography Centre, Liverpool, United Kingdom

Abstract

AbstractIt is our aim with this paper to investigate how the presence of a continental shelf and slope alters the relationship between interior ocean dynamics and western boundary (coastal) sea level. The assumption of a flat-bottomed basin with vertical sidewall at the coast is shown to hide the role that depth plays in the net force acting on the coast. A linear β-plane theory is then developed describing the transmission of sea level over variable depth bathymetry as analogous to the steady advection–diffusion of a thermal fluid. The parameter , relating the friction parameter r to the bathymetry depth H and width , is found to determine the contribution of interior sea level to coastal sea level, with small giving maximum penetration and large maximum insulation. In the small (infinite friction) limit the frictional boundary layer extends far offshore, and coastal sea level tends toward the vertical sidewall solution. Adding simple stratification produces exactly the same result but with reduced effective depth and hence enhanced penetration. Penetration can be further enhanced by permitting weakly nonlinear variations of thermocline depth. Wider and shallower shelves relative to the overall scales are also shown to maximize penetration for realistic values of . The theory implies that resolution of bathymetry and representation of friction can have a large impact on simulated coastal sea level, calling into question the ability of coarse-resolution models to accurately represent processes determining the dynamic coastal sea level.

Funder

Natural Environment Research Council

Publisher

American Meteorological Society

Subject

Oceanography

Reference28 articles.

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3