What Drives the Mean Along‐Shelf Flow in the Northwest Atlantic Coastal Ocean?

Author:

Chen Ke1ORCID,Yang Jiayan1ORCID

Affiliation:

1. Department of Physical Oceanography Woods Hole Oceanographic Institution Woods Hole MA USA

Abstract

AbstractA long‐standing hypothesis is that the steady along‐shelf circulation in the Northwest Atlantic (NWA) coastal ocean is driven by buoyancy input from continental freshwater runoff. However, the forcing from the freshwater runoff has not been adequately evaluated and compared with other potential driving mechanisms. This study investigates the roles of both wind stress and freshwater runoff in driving the mean along‐shelf flow in the NWA coastal ocean and examines other potential drivers using a newly developed high‐resolution regional model with realistic forcing conditions. The results reveal that wind stress has a larger impact than freshwater runoff on the overall mean circulation and along‐shelf sea‐level gradient on the NWA shelf. While the continental freshwater input consistently contributes to the equatorward along‐shelf flow and higher sea level along the coast, wind stress is more effective for the setup of the broad‐scale circulation pattern by driving the along‐shelf flow on the Labrador Shelf and opposing the flow in the Mid‐Atlantic Bight and on the Scotian Shelf. In addition to the local wind and continental runoff, the sub‐Arctic inflow from higher latitude is an essential part of the NWA shelf circulation system. This remote driver directly contributes to the along‐shelf flow and insulates the shelf flow from the Gulf Stream on the southern shelves.

Funder

Climate Program Office

National Science Foundation

Publisher

American Geophysical Union (AGU)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Wind‐Driven Along‐Coast Pressure Gradients in the Middle Atlantic Bight;Journal of Geophysical Research: Oceans;2024-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3