Vascular endothelium-leukocyte interaction; sticking shear force in venules.

Author:

Schmid-Schoenbein G W,Fung Y C,Zweifach B W

Abstract

To determine the shear force acting on a white blood cell sticking to the endothelium of a blood vessel, the flow field about a single white blood cell in a venule was determined by hign-speed motion picture photomicrography. The force acting on the white blood cell was then calculated according to the principles of fluid mechanics. In this paper, the calculation was made using an experimentally determined dimensionless shear force coefficient obtained from a kinematically and dynamically similar model. The large physical model of the hemodynamic system could be easily instrumented, and the shear force acting on the model cell and the flow field around it were measured. The data were then used to calculate a shear force coefficient. On the basis of dynamic similarity, this shear force coefficient was applied to the white blood cell in the venule. The shear force coefficient was strongly influenced by the hematocrit, so in vivo hematocrits were measured from electron micrographs. It was found that in the venules of the rabbit omentum a white blood cell sticking to the endothelial wall was subjected to a shear force in the range of 4 times 10--5 dynes to 234 times 10--5 dynes; the exact value depended on the size and motion of the white blood cell, the size of the blood vessel, the velocity of the blood flow, and the local hematocrit, which varied between 20% and 40% in venules of about 40 mum in diameter. The contact area between the white blood cell and the endothelial cell was estimated, and the shear stress was found to range between 50 dynes/cm-2 and 1060 dynes/cm-2. The normal stress of interaction between the white blood cell and the endothelium had a maximum value that was of the same order of magnitude as the shear stress. The accumulated relative error of the experimental procedure was about 49%. The instantaneous shear force was a random function of time because of random fluctuations of the hematocrit.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 154 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3