Scaling strategy for cell and gene therapy bioreactors based on turbulent parameters

Author:

Iurashev Dmytro1ORCID,Jones Peter Anthony2ORCID,Andreev Nadejda2,Wang Yana2,Iwata‐Kajihara Tomoko3,Kraus Barbara1,Hernandez Bort Juan A.1ORCID

Affiliation:

1. Gene Therapy Process Development Baxalta Innovations GmbH a part of Takeda companies Orth an der Donau Austria

2. Cell Therapy Takeda Pharmaceuticals USA Cambridge Massachusetts USA

3. Cell Therapy Process Development and Manufacturing Takeda Pharmaceuticals Japan Muraoka‐Higashi Fujisawa‐shi Kanagawa Japan

Abstract

AbstractSo far, power input has been used as the main parameter for bioreactor scale‐up/‐down in upstream process development and manufacturing. The rationale is that maintaining a consistent power input per unit volume should result in comparable mixing times at different scales. However, shear generated from turbulent flow may compromise the integrity of non‐robust cells such as those used during the production of cell and gene therapies, which may lead to low product quality and yield. Of particular interest is the Kolmogorov length parameter that characterizes the smallest turbulent eddies in a mixture. To understand its impact on scale‐up/‐down decisions, the distribution of Kolmogorov length along the trajectory flow of individual particles in bioreactors was estimated in silico with the help of computational fluid dynamics simulations. Specifically, in this study the scalability of iPSC‐derived lymphocyte production and the impact of shear stress across various differentiation stages were investigated. The study used bioreactors of volumes from 0.1 to 10 L, which correspond to the scales most used for parameter optimization. Our findings, which align with in vitro runs, help determine optimal agitation speed and shear stress adjustments for process transfer between scales and bioreactor types, using vertically‐oriented wheel and pitched‐blade impellers. In addition, empirical models specific to the bioreactors used in this study were developed. The provided computational analysis in combination with experimental data supports selection of appropriate bioreactors and operating conditions for various cell and gene therapy process steps.

Publisher

Wiley

Subject

Molecular Medicine,Applied Microbiology and Biotechnology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3