Synergistic Regulation Mechanism of Selectin and Integrin on Leukocyte Adhesion Under Shear Flow

Author:

Kang Wei1,Li Long1,Wang Jizeng1

Affiliation:

1. Key Laboratory of Mechanics on Disaster and Environment in Western China, Ministry of Education, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu 730000, China

Abstract

Abstract In the process of inflammation, the hydrodynamic process of circulating leukocyte recruitment to the inflammatory site requires the rolling adhesion of leukocytes in blood vessels mediated by selectin and integrin molecules. Although a number of experiments have demonstrated that cooperative effects exist between selectins and integrins in leukocyte rolling adhesion under shear flow, the mechanisms underlying how the mechanics of selectins and integrins synergistically may govern the dynamics of cell rolling is not yet fully resolved. To address this issue, here we theoretically investigate selectin and integrin jointly mediated rolling adhesion of leukocyte in shear flow, by considering two pairs’ binding/unbinding events as Markov processes and describing kinetics of leukocyte by the approach of continuum mechanics. Through examining the dynamics of leukocyte rolling as a function of relative fraction of selectin and integrin pairs, we show that, during recruitment, the elongation of intermittent weak selectin bonds consuming the kinetic energy of rolling leukocyte decelerates the rolling speed and enables the integrin pairs to form strong bonds, therefore achieving the arrestment of leukocyte (firm adhesion). The co-existence of selectins and integrins may also be required for effective phase transition from firm adhesion to rolling adhesion due to dynamic competition in pairs’ formation and elongation. These results are verified by the relevant Monte Carlo simulations and related to reported experimental observations.

Funder

Ministry of Education of the People's Republic of China

National Natural Science Foundation of China

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3