Affiliation:
1. From the Laboratory of Molecular Toxicology, University of Zaragoza, Spain.
Abstract
Objective—
The role of inorganic phosphate in the pathogenesis of vascular calcification (VC) has been studied extensively in recent years. Phosphonoformic acid (PFA), an inhibitor of type II Pi transporters, has been traditionally used to study the involvement of Pi transport in VC, because PFA also prevents calcium deposition in vitro. However, aortic vascular smooth muscle cells (VSMCs) only express PFA-resistant, type III transporters (Pit-1 and Pit-2). Therefore, in this article we have studied the mechanism of VC prevention by PFA.
Methods and Results—
Radiotracer Pi uptake in rat VSMCs was not inhibited at the concentrations at which PFA prevents calcification. Alternative mechanisms whereby PFA could prevent calcification, such as cytotoxicity or phosphodiesterase inhibition, have also been excluded. The progression of calcification also took place in fixed cells. The kinetics of VC prevention by PFA, pyrophosphate, phosphonoacetate, and bisphosphonates was similar in live and fixed cells, showing mean effective concentrations in the micromolar range.
Conclusions—
PFA mainly prevents VC through a physicochemical mechanism that is independent of any cellular metabolic activity, including Pi transport. Conversely, PFA seems to act similarly to its chemical analogues, inorganic pyrophosphate, and bisphosphonates, as suggested decades ago.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Cardiology and Cardiovascular Medicine
Cited by
104 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献