Machine learning based biomarker discovery for chronic kidney disease–mineral and bone disorder (CKD-MBD)

Author:

Li Yuting,Lou Yukuan,Liu Man,Chen Siyi,Tan Peng,Li Xiang,Sun Huaixin,Kong Weixin,Zhang Suhua,Shao Xiang

Abstract

Abstract Introduction Chronic kidney disease-mineral and bone disorder (CKD-MBD) is characterized by bone abnormalities, vascular calcification, and some other complications. Although there are diagnostic criteria for CKD-MBD, in situations when conducting target feature examining are unavailable, there is a need to investigate and discover alternative biochemical criteria that are easy to obtain. Moreover, studying the correlations between the newly discovered biomarkers and the existing ones may provide insights into the underlying molecular mechanisms of CKD-MBD. Methods We collected a cohort of 116 individuals, consisting of three subtypes of CKD-MBD: calcium abnormality, phosphorus abnormality, and PTH abnormality. To identify the best biomarker panel for discrimination, we conducted six machine learning prediction methods and employed a sequential forward feature selection approach for each subtype. Additionally, we collected a separate prospective cohort of 114 samples to validate the discriminative power of the trained prediction models. Results Using machine learning under cross validation setting, the feature selection method selected a concise biomarker panel for each CKD-MBD subtype as well as for the general one. Using the consensus of these features, best area under ROC curve reached up to 0.95 for the training dataset and 0.74 for the perspective dataset, respectively. Discussion/Conclusion For the first time, we utilized machine learning methods to analyze biochemical criteria associated with CKD-MBD. Our aim was to identify alternative biomarkers that could serve not only as early detection indicators for CKD-MBD, but also as potential candidates for studying the underlying molecular mechanisms of the condition.

Funder

Suzhou Medical Treatment and Public Health Foundation

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Health Policy,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3