Cilostazol Attenuates Angiotensin II–Induced Abdominal Aortic Aneurysms but Not Atherosclerosis in Apolipoprotein E–Deficient Mice

Author:

Umebayashi Ryoko1,Uchida Haruhito A.1,Kakio Yuki1,Subramanian Venkateswaran1,Daugherty Alan1,Wada Jun1

Affiliation:

1. From the Department of Nephrology, Rheumatology, Endocrinology and Metabolism (R.U., H.A.U., Y.K., J.W.) and Department of Chronic Kidney Disease and Cardiovascular Disease (H.A.U.), Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan; and Saha Cardiovascular Research Center (V.S., A.D.) and Department of Physiology (V.S., A.D.), University of Kentucky, Lexington.

Abstract

Objective— Abdominal aortic aneurysm (AAA) is a permanent dilation of the abdominal aorta associated with rupture, which frequently results in fatal consequences. AAA tissue is commonly characterized by localized structural deterioration accompanied with inflammation and profound accumulation of leukocytes, although the specific function of these cells is unknown. Cilostazol, a phosphodiesterase III inhibitor, is commonly used for patients with peripheral vascular disease or stroke because of its anti-platelet aggregation effect and anti-inflammatory effect, which is vasoprotective effect. In this study, we evaluated the effects of cilostazol on angiotensin II–induced AAA formation. Approach and Results— Male apolipoprotein E–deficient mice were fed either normal diet or a diet containing cilostazol (0.1% wt/wt). After 1 week of diet consumption, mice were infused with angiotensin II (1000 ng/kg per minute) for 4 weeks. Angiotensin II infusion increased maximal diameters of abdominal aortas, whereas cilostazol administration significantly attenuated dilatation of abdominal aortas, thereby, reducing AAA incidence. Cilostazol also reduced macrophage accumulation, matrix metalloproteinases activation, and inflammatory gene expression in the aortic media. In cultured vascular endothelial cells, cilostazol reduced expression of inflammatory cytokines and adhesive molecules through activation of the cAMP–PKA (protein kinase A) pathway. Conclusions— Cilostazol attenuated angiotensin II–induced AAA formation by its anti-inflammatory effect through phosphodiesterase III inhibition in the aortic wall. Cilostazol may be a promising new therapeutic option for AAAs.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3