Screening Drug-Induced Arrhythmia Using Human Induced Pluripotent Stem Cell–Derived Cardiomyocytes and Low-Impedance Microelectrode Arrays

Author:

Navarrete Enrique G.1,Liang Ping1,Lan Feng1,Sanchez-Freire Verónica1,Simmons Chelsey1,Gong Tingyu1,Sharma Arun1,Burridge Paul W.1,Patlolla Bhagat1,Lee Andrew S.1,Wu Haodi1,Beygui Ramin E.1,Wu Sean M.1,Robbins Robert C.1,Bers Donald M.1,Wu Joseph C.1

Affiliation:

1. From the Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, CA (E.G.N., P.L., F.L., V.S.-F., T.G., A.S., P.W.B., A.S.L., H.W., S.M.W., J.C.W.); Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA (E.G.N., P.L., F.L., V.S.-F., T.G., A.S., P.W.B., A.S.L., H.W., S.M.W.); Stanford Cardiovascular Institute, Stanford, CA (E.G.N., P.L., F.L., V.S.-F., C.S., T.G., P.W.B., B.P., A.S.L., H.W., R.E.B., S.M.W., R.C.R., J.C.W.); Department of...

Abstract

Background— Drug-induced arrhythmia is one of the most common causes of drug development failure and withdrawal from market. This study tested whether human induced pluripotent stem cell–derived cardiomyocytes (hiPSC-CMs) combined with a low-impedance microelectrode array (MEA) system could improve on industry-standard preclinical cardiotoxicity screening methods, identify the effects of well-characterized drugs, and elucidate underlying risk factors for drug-induced arrhythmia. hiPSC-CMs may be advantageous over immortalized cell lines because they possess similar functional characteristics as primary human cardiomyocytes and can be generated in unlimited quantities. Methods and Results— Pharmacological responses of beating embryoid bodies exposed to a comprehensive panel of drugs at 65 to 95 days postinduction were determined. Responses of hiPSC-CMs to drugs were qualitatively and quantitatively consistent with the reported drug effects in literature. Torsadogenic hERG blockers, such as sotalol and quinidine, produced statistically and physiologically significant effects, consistent with patch-clamp studies, on human embryonic stem cell–derived cardiomyocytes hESC-CMs. False-negative and false-positive hERG blockers were identified accurately. Consistent with published studies using animal models, early afterdepolarizations and ectopic beats were observed in 33% and 40% of embryoid bodies treated with sotalol and quinidine, respectively, compared with negligible early afterdepolarizations and ectopic beats in untreated controls. Conclusions— We found that drug-induced arrhythmias can be recapitulated in hiPSC-CMs and documented with low impedance MEA. Our data indicate that the MEA/hiPSC-CM assay is a sensitive, robust, and efficient platform for testing drug effectiveness and for arrhythmia screening. This system may hold great potential for reducing drug development costs and may provide significant advantages over current industry standard assays that use immortalized cell lines or animal models.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3