Peptide Blocking Self-Polymerization of Extracellular Calcium-Sensing Receptor Attenuates Hypoxia-Induced Pulmonary Hypertension

Author:

Xiao Rui12,Luo Shengquan12,Zhang Ting12,Lv Yankai23,Wang Tao24,Zhang Jiwei5,Su Yuan26,Ruiz Matthieu78,Dupuis Jocelyn89,Zhu Liping12,Hu Qinghua12ORCID

Affiliation:

1. From the Department of Pathophysiology, School of Basic Medicine (R.X., S.L., T.Z., L.Z., Q.H.)

2. Key Laboratory of Pulmonary Diseases of Ministry of Health (R.X., S.L., T.Z., Y.L., T.W., J.Z., Y.S., L.Z., Q.H.)

3. Department of Pathology (Y.L.), Tongji Hospital

4. Department of Respiratory and Critical Care Medicine (T.W.), Tongji Hospital

5. Department of Pathology (J.Z.)

6. Department of Respiratory and Critical Care Medicine, Union Hospital (Y.S.)

7. Tongji Medical College, Huazhong University of Science and Technology (HUST), China; Department of Nutrition, Université de Montréal, Canada (M.R.)

8. Montreal Heart Institute, Canada (M.R., J.D.)

9. Department of medicine, Université de Montréal, Canada (J.D.).

Abstract

Activation of the CaSR (extracellular calcium-sensing receptor) has been recognized as a critical mediator of hypoxia-induced pulmonary hypertension. Preventive targeting of the early initiating phase as well as downstream events after CaSR activation remains unexplored. As a representative of the G protein-coupled receptor family, CaSR polymerizes on cell surface upon stimulation. Immunoblotting together with MAL-PEG technique identified a reactive oxygen species-sensitive CaSR polymerization through its extracellular domain in pulmonary artery smooth muscle cells upon exposure to acute hypoxia. Fluorescence resonance energy transfer screening employing blocking peptides determined that cycteine129/131 residues in the extracellular domain of CaSR formed intermolecular disulfide bonds to promote CaSR polymerization. The monitoring of intracellular Ca 2+ signal highlighted the pivotal role of CaSR polymerization in its activation. In contrast, the blockade of disulfide bonds formation using a peptide decreased both CaSR and hypoxia-induced mitogenic factor expression as well as other hypoxic-related genes in vitro and in vivo and attenuated pulmonary hypertension development in rats. The blocking peptide did not affect systemic arterial oxygenation in vivo but inhibited acute hypoxia-induced pulmonary vasoconstriction. Pharmacokinetic analyses revealed a more efficient lung delivery of peptide by inhaled nebulizer compared to intravenous injection. In addition, the blocking peptide did not affect systemic arterial pressure, body weight, left ventricular function, liver, or kidney function or plasma Ca 2+ level. In conclusion, a peptide blocking CaSR polymerization reduces its hypoxia-induced activation and downstream events leading to pulmonary hypertension and represents an attractive inhaled preventive alternative worthy of further development.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3