Platelet-Derived TGF (Transforming Growth Factor)-β1 Enhances the Aerobic Glycolysis of Pulmonary Arterial Smooth Muscle Cells by PKM2 (Pyruvate Kinase Muscle Isoform 2) Upregulation

Author:

Zhu Ying12,Shu Dan123,Gong Xue12,Lu Meng12,Feng Qinyu124,Zeng Xiang-Bin12,Zhang Han1256,Gao Jiahui12,Guo Ya-Wei12,Liu Luman12,Ma Rong12ORCID,Zhu Liping1256,Hu Qinghua1256ORCID,Ming Zhang-Yin12ORCID

Affiliation:

1. Department of Pharmacology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China (Y.Z., D.S., X.G., M.L., X.-B.Z., J.G., Y.W.G., L.L., R.M., Z.-Y.M.).

2. The Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China (Y.Z., D.S., X.G., M.L., X.-B.Z., J.G., Y.W.G., L.L., R.M., Z.-Y.M.).

3. Department of Pharmacy, School of Medicine, Wuhan University of Science and Technology, Wuhan, China (D.S.).

4. Department of Gastroenterology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China (Q.F.).

5. Department of Pathophysiology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan China (H.Z., L.Z., Q.H.).

6. Key Laboratory of Pulmonary Diseases of Ministry of Health, Wuhan China (H.Z., L.Z., Q.H.).

Abstract

Background: Metabolic reprogramming is a hallmark of pulmonary arterial hypertension. Platelet activation has been implicated in pulmonary arterial hypertension (PAH), whereas the role of platelet in the pathogenesis of PAH remains unclear. Methods: First, we explored the platelet function of semaxanib‚ a inhibitor of VEGF receptor (SU5416)/hypoxia mice and monocrotaline-injected rats PAH model. Then we investigated pulmonary arterial smooth muscle cell aerobic glycolysis after being treated with platelet supernatant. TGF (transforming growth factor)-βRI, pyruvate kinase muscle 2, and other antagonists were applied to identify the underlying mechanism. In addition, platelet-specific deletion TGF-β1 mice were exposed to chronic hypoxia and SU5416. Cardiopulmonary hemodynamics, vascular remodeling, and aerobic glycolysis of pulmonary arterial smooth muscle cell were determined. Results: Here, we demonstrate that platelet-released TGF-β1 enhances the aerobic glycolysis of pulmonary arterial smooth muscle cells after platelet activation via increasing pyruvate kinase muscle 2 expression. Mechanistically, platelet-derived TGF-β1 regulate spyruvate kinase muscle 2 expression through mTOR (mammalian target of rapamycin)/c-Myc/PTBP-1(polypyrimidine tract binding protein 1)/hnRNPA-1(heterogeneous nuclear ribonucleoprotein A1) pathway. Platelet TGF-β1 deficiency mice are significantly protected from SU5416 plus chronic hypoxia–induced PAH, including attenuated increases in right ventricular systolic pressure and less pulmonary vascular remodeling. Also, in Pf4cre + Tgfb1 fl/fl mice, pulmonary arterial smooth muscle cells showed lower glycolysis capacity and their pyruvate kinase muscle 2 expression decreased. Conclusions: Our data demonstrate that TGF-β1 released by platelet contributes to the pathogenesis of PAH and further highlights the role of platelet in PAH.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3