Co-profiling reveals distinct patterns of genomic chromatin accessibility and gene expression in pulmonary hypertension caused by chronic hypoxia

Author:

Yu Dongdong,Zhang Ting,Zhou Guangyuan,Wu Zeang,Xiao Rui,Zhang Han,Liu Bingxun,Li Xiangpan,Ruiz Matthieu,Dupuis Jocelyn,Zhu Liping,Hu Qinghua

Abstract

AbstractIntroductionAberrant gene expression is a key mechanism underlying pulmonary hypertension (PH) development. The alterations of genomic chromatin accessibility and their relationship with the aberrant gene expressions in PH are poorly understood. We used bulk Assay for Transposase-Accessible Chromatin with high-throughput sequencing (ATAC-seq) and RNA sequencing (RNA-seq) in pulmonary artery smooth muscle cells (PASMCs) of chronic hypoxia-exposed rats mimicking group 3 human PH.MethodsAdult Sprague Dawley rats were commercially obtained from Hunan SJA (Hunan SJA Laboratory Animal Co., Changsha, China) and randomizedly allocated into four groups exposing to nomobaric hypoxia or normoxia for 1 or 28 days respectively. After the assessment of pulmonary hemodynamics, smooth muscle cells were isolated from intralobular arteries and simultaneously subjected to bulk Assay of ATAC-seq and RNA-seq.ResultsHypoxic exposure for continuous 28-days, but not for 1-day, induced established PH phenotypes in rats. ATAC-seq revealed a major distribution of differential accessibility regions (DARs) annotated to the genome in out-of-promoter regions, following 1-day or 28-days hypoxia. 1188 DAR-associated genes and 378 differentially expressed genes (DEGs) were identified in rats after exposure to 1-day hypoxia, while 238 DAR-associated genes and 452 DEGs for 28-days hypoxia. Most of the DAR-associated genes or DEGs in 1-day did not overlap with that of 28-days hypoxia. A Pearson correlation analysis indicated no significant correlation between ATAC-seq and RNA-seq.ConclusionsThe alterations in genomic chromatin accessibility and genes expression of PASMCs in the initial stage of hypoxia are distinct from the established stage of hypoxia-induced PH. The genomic differential accessibility regions may not be the main mechanisms directly underlying the differentially expressed genes observed either in the initial or established stages of PH. Thus the time-course alterations of gene expression and their possible indirect link with genomic chromatin accessibility warrant more attention in mechanistic study of pulmonary hypertension.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3