Docosahexaenoic Acid, a Peroxisome Proliferator–Activated Receptor-α Ligand, Induces Apoptosis in Vascular Smooth Muscle Cells by Stimulation of p38 Mitogen-Activated Protein Kinase

Author:

Diep Quy N.1,Touyz Rhian M.1,Schiffrin Ernesto L.1

Affiliation:

1. From the MRC Multidisciplinary Research Group on Hypertension, Clinical Research Institute of Montreal, University of Montreal, Montreal, Quebec, Canada.

Abstract

Abstract —Omega-3 fatty acids (n-3 FAs) have been shown to exert a blood pressure–lowering effect in hypertension, possibly in part by influencing vascular structure. We previously demonstrated that n-3 FAs induce vascular smooth muscle cell (VSMC) apoptosis, which could exert an effect on the structure of blood vessels. In the present study, we investigated signaling pathways through which n-3 FAs mediate apoptosis in VSMCs. Cultured mesenteric VSMCs from Sprague-Dawley rats were stimulated with docosahexaenoic acid (DHA), a representative n-3 FAs. Morphological changes in apoptosis and DNA fragmentation were examined with phase-contrast microscopy and fluorescence microscopy with Hoechst 33342 staining. To clarify possible pathways of apoptosis, we evaluated the expression of phosphorylated p38 mitogen-activated protein kinases, bax, bcl-2, cytochrome c , and peroxisome proliferator-activated receptor-α (PPAR-α) with Western blot analysis. DHA treatment induced cell shrinkage, cell membrane blebbing, and apoptotic bodies in VSMCs. DHA time-dependently activated p38 mitogen-activated protein kinases, bax, PPAR-α, and cytochrome c , with maximal effects obtained after 5 and 30 minutes and 1 and 3 hours, respectively. SB-203580 and SB-202190, selective p38 inhibitors, reduced DHA-elicited apoptosis and expression of PPAR-α but had no effect on the expression of bax or cytochrome c . The present results indicate that DHA induces apoptosis in VSMCs through ≥2 distinct mechanisms: (1) a p38-dependent pathway that regulates PPAR-α and (2) a p38-independent pathway via dissipation of mitochondrial membrane potential and cytochrome c release. The death-signaling pathway stimulated by DHA may involve an integration of these multiple pathways. By triggering VSMC apoptosis, DHA may play a pathophysiological role in vascular remodeling in cardiovascular disease.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3