Affiliation:
1. Department of Physiology and Biophysics, University of Vermont College of Medicine, Medical Center Hospital of Vermont, Burlington 05405.
Abstract
BACKGROUND
In congestive heart failure (idiopathic dilated cardiomyopathy), exercise is accompanied by a smaller-than-normal decrease in end-diastolic left ventricular volume, depressed peak rates of left ventricular pressure rise and fall, and depressed heart-rate-dependent potentiation of contractility (bowditch treppe). We studied contractile function of isolated left ventricular myocardium from New York Heart Association class IV-failing and nonfailing hearts at physiological temperature and heart rates in order to identify and quantitate abnormalities in myocardial function that underlie abnormal ventricular function.
METHODS AND RESULTS
The isometric tension-generating ability of isolated left ventricular strips from nonfailing and failing human hearts was investigated at 37 degrees C and contraction frequencies ranging from 12 to 240 per minute (min-1). Strips were dissected using a new method of protection against cutting injury with 2,3-butanedione monoxime (BDM) as a cardioplegic agent. In nonfailing myocardium the twitch tension-frequency relation is bell-shaped developing 25 +/- 2 mN/mm2 at a contraction frequency of 72 min-1 and peaking at 44 +/- 3.7 mN/mm2 at a contraction frequency of 174 +/- 4 min-1. In failing myocardium the peak of the curve occurs at lower frequencies between 6 and 120 min-1 averaging 81 +/- 22 min-1, and it develops 48% (p less than 0.001) and 80% (p less than 0.001) less tension than in nonfailing myocardium at 72 and 174 min-1, respectively. Between 60 and 150 min-1 tension increases by 107% in nonfailing myocardium, but it does not change significantly in failing myocardium. Peak rates of rise and fall of isometric twitch tension vary in parallel with twitch tension as stimulation frequency rises in nonfailing myocardium but not in failing myocardium.
CONCLUSIONS
The quantitative agreement between these results from isolated myocardium and those from catheterization laboratory measurements on intact humans suggest that alterations of myocardial origin, independent of systemic factors, may contribute to the above mentioned abnormalities in left ventricular function seen in dilated cardiomyopathy.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine
Reference33 articles.
1. Use of the Frank-Starling mechanism during submaximal versus maximal upright exercise;Plotnick GD;Am J Physiol,1986
2. Depression of systolic and diastolic myocardial reserve during atrial pacing tachycardia in patients with dilated cardiomyopathy.
3. Comparative force-frequency relationships in human and other mammalian ventricular myocardium
4. Reversal of the force-frequency relationship in working myocardium from patients with end-stage heart failure;Feldman MD;J Appl Cardiol,1988
Cited by
524 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献