Abstract
AbstractChronic heart failure is one of the most common reasons for hospitalization. Current risk stratification is based on ejection fraction, whereas many arrhythmic events occur in patients with relatively preserved ejection fraction. We aim to investigate the mechanistic link between proarrhythmic abnormalities, reduced contractility and diastolic dysfunction in heart failure, using electromechanical modelling and simulations of human failing cardiomyocytes. We constructed, calibrated and validated populations of human electromechanical models of failing cardiomyocytes, that were able to reproduce the prolonged action potential, reduced contractility and diastolic dysfunction as observed in human data, as well as increased propensity to proarrhythmic incidents such as early afterdepolarization and beat-to-beat alternans. Our simulation data reveal that proarrhythmic incidents tend to occur in failing myocytes with lower diastolic tension, rather than with lower contractility, due to the relative preserved SERCA and sodium calcium exchanger current. These results support the inclusion of end-diastolic volume to be potentially beneficial in the risk stratifications of heart failure patients.
Funder
Oxford-Bristol Myers Squibb Fellowship
Wellcome Trust
The Personalised In-Silico Cardiology (PIC) project, the CompBioMed 1 and 2 Centre of Excellence in Computational Biomedicine
an NC3Rs Infrastructure for Impact Award
The TransQST project
The Oxford BHF Centre of Research Excellence
PRACE-ICEI funding projects
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献