Endothelium-dependent vascular relaxation is abnormal in the coronary microcirculation of atherosclerotic primates.

Author:

Sellke F W1,Armstrong M L1,Harrison D G1

Affiliation:

1. Veterans Administration Medical Center, Iowa City, Iowa.

Abstract

Atherosclerosis impairs endothelium-dependent relaxation of large conduit arteries. Because coronary resistance vessels are spared from the development of overt atherosclerosis, endothelium-dependent responses were examined in these vascular segments. Malaysian cynomolgus monkeys (n = 6) were made atherosclerotic by being fed a 0.7% cholesterol diet for 18 months. Control monkeys (n = 6) were fed a standard diet. Coronary microvessels (122-220 microns) were studied in a pressurized (20 mm Hg), no-flow state using a video-imaging apparatus. Relaxations of microvessels, preconstricted with the thromboxane analogue U46619, were determined in response to acetylcholine, bradykinin, the calcium ionophore A23187, adenosine, and sodium nitroprusside. Microvascular relaxations to bradykinin and A23187 were reduced in atherosclerotic monkeys compared with controls, whereas acetylcholine produced additional contraction in atherosclerotic monkeys. Responses of preconstricted microvessels to adenosine and sodium nitroprusside were identical in atherosclerotic and control animals. Indomethacin did not alter responses in control or atherosclerotic animals. Histologic examination revealed neither intimal thickening nor plaque formation in microvessels of this size class despite marked changes in conduit arteries. Electron microscopy showed minor alterations of endothelial cell morphology in microvessels of atherosclerotic animals. In conclusion, long-term hypercholesterolemia markedly impairs endothelium-dependent vascular relaxation in the coronary microcirculation where overt atherosclerosis does not develop. These changes in endothelial cell function may significantly alter regulation of myocardial perfusion by neurohumoral stimuli.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3