Affiliation:
1. Sheikh Zayed Institute for Pediatric Surgical Innovation Children’s National Hospital Washington DC
2. Children’s National Heart Institute Children’s National Hospital Washington DC
3. Division of Critical Care Medicine Children’s National Hospital Washington DC
4. Division of Hematology and Laboratory Medicine Children’s National Hospital Washington DC
5. Department of Pediatrics George Washington University School of Medicine Washington DC
6. Department of Pathology George Washington University School of Medicine Washington DC
7. Department of Pharmacology & Physiology George Washington University School of Medicine Washington DC
Abstract
Background
The red blood cell (RBC) storage lesion is a series of morphological, functional, and metabolic changes that RBCs undergo following collection, processing, and refrigerated storage for clinical use. Since the biochemical attributes of the RBC unit shifts with time, transfusion of older blood products may contribute to cardiac complications, including hyperkalemia and cardiac arrest. We measured the direct effect of storage age on cardiac electrophysiology and compared it with hyperkalemia, a prominent biomarker of storage lesion severity.
Methods and Results
Donor RBCs were processed using standard blood‐banking techniques. The supernatant was collected from RBC units, 7 to 50 days after donor collection, for evaluation using Langendorff‐heart preparations (rat) or human induced pluripotent stem cell–derived cardiomyocytes. Cardiac parameters remained stable following exposure to “fresh” supernatant from red blood cell units (day 7: 5.8±0.2 mM K
+
), but older blood products (day 40: 9.3±0.3 mM K
+
) caused bradycardia (baseline: 279±5 versus day 40: 216±18 beats per minute), delayed sinus node recovery (baseline: 243±8 versus day 40: 354±23 ms), and increased the effective refractory period of the atrioventricular node (baseline: 77±2 versus day 40: 93±7 ms) and ventricle (baseline: 50±3 versus day 40: 98±10 ms) in perfused hearts. Beating rate was also slowed in human induced pluripotent stem cell–derived cardiomyocytes after exposure to older supernatant from red blood cell units (−75±9%, day 40 versus control). Similar effects on automaticity and electrical conduction were observed with hyperkalemia (10–12 mM K
+
).
Conclusions
This is the first study to demonstrate that “older” blood products directly impact cardiac electrophysiology, using experimental models. These effects are likely caused by biochemical alterations in the supernatant from red blood cell units that occur over time, including, but not limited to hyperkalemia. Patients receiving large volume and/or rapid transfusions may be sensitive to these effects.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Cardiology and Cardiovascular Medicine
Reference84 articles.
1. The science and practice of cardiopulmonary bypass: From cross circulation to ECMO and SIRS;Punjabi PP;Glob Cardiol Sci Pract,2013
2. Transfusion and outcome in heart surgery
3. Declining blood collection and utilization in the United States
4. Slowing decline in blood collection and transfusion in the United States - 2017;Jones JM;Transfusion,2020
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献