Diseased Erythrocyte Enrichment Based on I-Shaped Pillar DLD Arrays

Author:

Lv Yao1,Wu Jiangbo1ORCID,He Yongqing2,Liu Jie1,Zhang Wenyu1,Yan Zihan1

Affiliation:

1. School of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou 730050, China

2. Chongqing Key Laboratory of Micro-Nano System and Intelligent Sensing, Chongqing Technology and Business University, Chongqing 400067, China

Abstract

Enrichment of erythrocytes is a necessary step in the diagnosis of blood diseases. Due to the high deformability and viscosity of erythrocytes, they cannot be regarded as stable point-like solids, so the influence of their deformability on fluid dynamics must be considered. Therefore, by using the special effect of an I-shaped pillar (I-pillar) on erythrocytes, erythrocytes with different deformability can be made to produce different provisional distances in the chip, so as to achieve the separation of the two kinds of erythrocytes. In this study, a microfluidic chip was designed to conduct a control test between erythrocytes stored for a long time and fresh erythrocytes. At a specific flow rate, the different deformable erythrocytes in the chip move in different paths. Then, the influence of erythrocyte deformability on its movement trajectory was analyzed by two-dimensional finite element flow simulation. DLD sorting technology provides a new method for the sorting and enrichment of diseased erythrocytes.

Funder

Key Program of the National Natural Science Foundation of China

National Natural Science Foundation of China

Double First-Class Key Program of Gansu Provincial Department of Education

2022 Gansu Provincial University Industry Support Plan Project

Key R&D Program of Gansu Province of China

Key Laboratory of Power Station Energy Transfer Conversion and System of Ministry of Education

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3