Bone Marrow Transplantation in Apolipoprotein E–Deficient Mice

Author:

Van Eck Miranda1,Herijgers Nicole1,Yates John1,Pearce Nigel J.1,Hoogerbrugge Peter M.1,Groot Pieter H. E.1,Van Berkel Theo J. C.1

Affiliation:

1. From the Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Sylvius Laboratories, Leiden University, Leiden, The Netherlands (M. Van E., N.H., Th.J.C. Van B.); SmithKline Beecham Pharmaceuticals, Harlow, Essex, UK (J.Y., N.J.P., P.H.E.G.); and University Hospital Leiden, Department of Pediatrics, Leiden, The Netherlands (P.M.H.).

Abstract

Abstract Apolipoprotein E (apoE), a high-affinity ligand for lipoprotein receptors, is synthesized by the liver and extrahepatic tissues, including cells of the monocyte/macrophage lineage. Inactivation of the apoE gene in mice leads to a prominent increase in serum cholesterol and triglyceride levels and the development of premature atherosclerosis. In this study, the role of monocyte/macrophage-derived apoE in lipoprotein remnant metabolism and atherogenesis was assessed. The influence of apoE gene dosage on serum lipid concentrations was determined by transplantation of homozygous apoE-deficient (apoE −/− ), heterozygous apoE-deficient (apoE +/− ), and wild-type (apoE +/+ ) bone marrow in homozygous apoE-deficient mice. The concentration of apoE detected in serum was found to be gene dosage dependent, being 3.52±0.30%, 1.87±0.17%, and 0% of normal in transplanted mice receiving either apoE +/+ , apoE +/− , or apoE −/− bone marrow, respectively. These low concentrations of apoE nevertheless dramatically reduced serum cholesterol levels owing to a reduction of VLDL and, to a lesser extent, LDL, while HDL levels were slightly raised. After 4 months on a “Western-type” diet, atherosclerosis was evidently reduced in mice transplanted with apoE +/+ bone marrow, compared with control transplanted mice. To study the mechanism of the lipoprotein changes on bone marrow transplantation, the in vivo turnover of autologous serum (β)VLDL was studied. The serum half-life of (β)VLDL in transplanted mice, compared with control apoE-deficient mice, was shortened mainly as a consequence of an increased recognition and uptake by the liver. Analysis of the relative contribution of the liver parenchymal cells, endothelial cells, and Kupffer cells (liver tissue macrophages) indicated an increased uptake by parenchymal cells, while the relative contribution of Kupffer cells was decreased. In conclusion, macrophage-derived apoE can dose-dependently reduce hypercholesterolemia in apoE-deficient mice owing to increased recognition and uptake of (β)VLDL by parenchymal liver cells, leading to a decreased susceptibility to atherosclerosis.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 85 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3