Changes in Connexin Expression and the Atrial Fibrillation Substrate in Congestive Heart Failure

Author:

Burstein Brett1,Comtois Philippe1,Michael Georghia1,Nishida Kunihiro1,Villeneuve Louis1,Yeh Yung-Hsin1,Nattel Stanley1

Affiliation:

1. From the Department of Medicine (B.B., G.M., K.N., L.V., Y.-H.Y., S.N.) and Physiology/Institute of Biomedical Engineering (P.C.), Research Center (B.B., P.C., G.M., K.N., Y.-H.Y., S.N.), Montreal Heart Institute and Université de Montréal; and Department of Pharmacology and Therapeutics (B.B., S.N.), McGill University.

Abstract

Rationale: Although connexin changes are important for the ventricular arrhythmic substrate in congestive heart failure (CHF), connexin alterations during CHF-related atrial arrhythmogenic remodeling have received limited attention. Objective: To analyze connexin changes and their potential contribution to the atrial fibrillation (AF) substrate during the development and reversal of CHF. Methods and Results: Three groups of dogs were studied: CHF induced by 2-week ventricular tachypacing (240 bpm, n=15); CHF dogs allowed a 4-week nonpaced recovery interval after 2-week tachypacing (n=16); and nonpaced sham controls (n=19). Left ventricular (LV) end-diastolic pressure and atrial refractory periods increased with CHF and normalized on CHF recovery. CHF caused abnormalities in atrial conduction indexes and increased the duration of burst pacing-induced AF (DAF, from 22±7 seconds in control to 1100±171 seconds, P <0.001). CHF did not significantly alter overall atrial connexin (Cx)40 and Cx43 mRNA and protein expression levels, but produced Cx43 dephosphorylation, increased Cx40/Cx43 protein expression ratio and caused Cx43 redistribution toward transverse cell-boundaries. All of the connexin-alterations reversed on CHF recovery, but CHF-induced conduction abnormalities and increased DAF (884±220 seconds, P <0.001 versus control) remained. The atrial fibrous tissue content increased from 3.6±0.7% in control to 14.7±1.5% and 13.3±2.3% in CHF and CHF recovery, respectively (both P <0.01 versus control), with transversely running zones of fibrosis physically separating longitudinally directed muscle bundles. In an ionically based action potential/tissue model, fibrosis was able to account for conduction abnormalities associated with CHF and recovery. Conclusions: CHF causes atrial connexin changes, but these are not essential for CHF-related conduction disturbances and AF promotion, which are rather related primarily to fibrotic interruption of muscle bundle continuity.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3