Role of AMPK in Atrial Metabolic Homeostasis and Substrate Preference

Author:

Toksoy Zeren,Ma Yina,Goedeke Leigh,Li Wenxue,Hu Xiaoyue,Wu Xiaohong,Cacheux Marine,Liu YanshengORCID,Akar Fadi G.,Shulman Gerald I.,Young Lawrence H.

Abstract

SummaryAtrial fibrillation is the most common clinical arrhythmia and may be due in part to metabolic stress. Atrial specific deletion of the master metabolic sensor, AMP-activated protein kinase (AMPK), induces atrial remodeling culminating in atrial fibrillation in mice, implicating AMPK signaling in the maintenance of atrial electrical and structural homeostasis. However, atrial substrate preference for mitochondrial oxidation and the role of AMPK in regulating atrial metabolism are unknown. Here, using LC-MS/MS methodology combined with infusions of [13C6]glucose and [13C4]β-hydroxybutyrate in conscious mice, we demonstrate that conditional deletion of atrial AMPK catalytic subunits shifts mitochondrial atrial metabolism away from fatty acid oxidation and towards pyruvate oxidation. LC-MS/MS-based quantification of acyl-CoAs demonstrated decreased atrial tissue content of long-chain fatty acyl-CoAs. Proteomic analysis revealed a broad downregulation of proteins responsible for fatty acid uptake (LPL, CD36, FABP3), acylation and oxidation. Atrial AMPK deletion reduced expression of atrial PGC1-α and downstream PGC1-α/PPARα/RXR regulated gene transcripts. In contrast, atrial [14C]2-deoxyglucose uptake and GLUT1 expression increased with fasting in mice with AMPK deletion, while the expression of glycolytic enzymes exhibited heterogenous changes. Thus, these results highlight the crucial homeostatic role of AMPK in the atrium, with loss of atrial AMPK leading to downregulation of the PGC1-α/PPARα pathway and broad metabolic reprogramming with a loss of fatty acid oxidation, which may contribute to atrial remodeling and arrhythmia.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3