LDL Receptor Regulates the Reverse Transport of Macrophage-Derived Unesterified Cholesterol via Concerted Action of the HDL-LDL Axis

Author:

Cedó Lídia12,Metso Jari3,Santos David12,García-León Annabel1,Plana Núria24,Sabate-Soler Sonia1,Rotllan Noemí1,Rivas-Urbina Andrea15,Méndez-Lara Karen A.15,Tondo Mireia1,Girona Josefa4,Julve Josep152ORCID,Pallarès Victor1,Benitez-Amaro Aleyda6,Llorente-Cortes Vicenta67,Pérez Antonio152,Gómez-Coronado Diego89,Ruotsalainen Anna-Kaisa10,Levonen Anna-Liisa10,Sanchez-Quesada José Luis152,Masana Luís24,Kovanen Petri T.11,Jauhiainen Matti3,Lee-Rueckert Miriam11,Blanco-Vaca Francisco152,Escolà-Gil Joan Carles152ORCID

Affiliation:

1. From the Institut d’Investigacions Biomèdiques Sant Pau, Barcelona, Spain (L.C., D.S., A.G.-L., S.S.-S., N.R., A.R.-U., K.A.M.-L., M.T., J.J., V.P., A.P., J.L.S.-Q., F.B.-V., J.C.E.-G.)

2. CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Madrid, Spain (L.C., D.S., N.P., J.J., A.P., J.L.S.-Q., L.M., F.B.-V., J.C.E.-G.)

3. Minerva Foundation Institute for Medical Research and National Institute for Health and Welfare, Genomics and Biomarkers Unit, Biomedicum, Helsinki, Finland (J.M., M.J.)

4. Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Rovira i Virgili University, IISPV, Reus, Spain (N.P., J.G., L.M.)

5. Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Spain (A.R.-U., K.A.M.-L., J.J., A.P., J.L.S.-Q., F.B.-V., J.C.E.-G.)

6. CIBER en Bioingeniería, Biomateriales y Nanomedicina, Institut de Recerca Josep Carreras, Barcelona, Spain (V.P.); Biomedical Research Institute Sant Pau (IIB Sant Pau), Institute of Biomedical Research of Barcelona-Spanish National Research Council (A.B.-A., V.L.-C.)

7. Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain (V.L.-C.)

8. Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain (D.G.-C.)

9. Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain (D.G.-C.)

10. University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, Kuopio (A.-K.R., A.-L.L.)

11. and Wihuri Research Institute, Helsinki, Finland (P.T.K., M.L.-R.).

Abstract

Rationale: The HDL (high-density lipoprotein)-mediated stimulation of cellular cholesterol efflux initiates macrophage-specific reverse cholesterol transport (m-RCT), which ends in the fecal excretion of macrophage-derived unesterified cholesterol (UC). Early studies established that LDL (low-density lipoprotein) particles could act as efficient intermediate acceptors of cellular-derived UC, thereby preventing the saturation of HDL particles and facilitating their cholesterol efflux capacity. However, the capacity of LDL to act as a plasma cholesterol reservoir and its potential impact in supporting the m-RCT pathway in vivo both remain unknown. Objective: We investigated LDL contributions to the m-RCT pathway in hypercholesterolemic mice. Methods and Results: Macrophage cholesterol efflux induced in vitro by LDL added to the culture media either alone or together with HDL or ex vivo by plasma derived from subjects with familial hypercholesterolemia was assessed. In vivo, m-RCT was evaluated in mouse models of hypercholesterolemia that were naturally deficient in CETP (cholesteryl ester transfer protein) and fed a Western-type diet. LDL induced the efflux of radiolabeled UC from cultured macrophages, and, in the simultaneous presence of HDL, a rapid transfer of the radiolabeled UC from HDL to LDL occurred. However, LDL did not exert a synergistic effect on HDL cholesterol efflux capacity in the familial hypercholesterolemia plasma. The m-RCT rates of the LDLr (LDL receptor)-KO (knockout), LDLr-KO/APOB100, and PCSK9 (proprotein convertase subtilisin/kexin type 9)-overexpressing mice were all significantly reduced relative to the wild-type mice. In contrast, m-RCT remained unchanged in HAPOB100 Tg (human APOB100 transgenic) mice with fully functional LDLr, despite increased levels of plasma APO (apolipoprotein)-B–containing lipoproteins. Conclusions: Hepatic LDLr plays a critical role in the flow of macrophage-derived UC to feces, while the plasma increase of APOB-containing lipoproteins is unable to stimulate m-RCT. The results indicate that, besides the major HDL-dependent m-RCT pathway via SR-BI (scavenger receptor class B type 1) to the liver, a CETP-independent m-RCT path exists, in which LDL mediates the transfer of cholesterol from macrophages to feces. Graphical Abstract: A graphical abstract is available for this article.

Funder

MEC | Instituto de Salud Carlos III

Fundació la Marató de TV3

Ministerio de Ciencia e Innovación

Aarne Koskelon Säätiö

Sydäntutkimussäätiö

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3