Virtual Sources and Sinks During Extracellular Field Shocks in Cardiac Cell Cultures

Author:

Kondratyev Aleksandar A.1,Didon Jean-Philippe1,Hinnen-Oberer Helene1,Lemay Mathieu1,Kucera Jan P.1,Kleber Andre G.1

Affiliation:

1. From the Department of Physiology, University of Bern, Bern, Switzerland (A.A.K., H.H-O., M.L., J.P.K., A.G.K.); Schiller Incorporated Laboratory, Wissembourg, France (J-P.D.).

Abstract

Background— One mechanism by which extracellular field shocks (ECFSs) defibrillate the heart is by producing changes in membrane potential (V m ) at tissue discontinuities. Such virtual electrodes may produce new excitation waves or affect locally propagating action potentials. The rise time of V m determines the required duration of a single defibrillation pulse to reach a critical threshold for activation or for the modification of ion channel function, and depends on the electric and microstructural characteristics of the tissue. Methods and Results— We used optical mapping of V m in patterned cultures of neonatal rat ventricular myocytes to assess the relationship between cardiac structure and the early time course of V m during ECFSs. At monolayer boundaries, the time course of V m showed a close fit to the theoretical change predicted by theory, with a membrane time constant of 2.65±0.19 ms (n=13) and a length constant of 159±6 μm (n=10). Experiments in patterned strands, mimicking the resistive boundaries that occur naturally in the heart, explained the observation that the rate of rise and the maximal amplitudes of the V m changes are inversely related because of electrotonic interactions between structural boundaries. Interrupting ECFSs by very short intervals diminished V m , but did not cause major changes in its overall time course. Conclusions— Interaction between virtual sinks and sources decreases the magnitude of the changes in V m but accelerates its time course. For efficient defibrillation, short ECFSs are needed, with an amplitude adapted to match the boundary interaction.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3